Suppr超能文献

新生儿癫痫发作检测:通过监督自适应改进分类

Seizure detection in neonates: Improved classification through supervised adaptation.

作者信息

Thomas E M, Greene B R, Lightbody G, Marnane W P, Boylan G B

机构信息

Dept. of Electrical Engineering, UCC, Cork, Ireland.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2008;2008:903-6. doi: 10.1109/IEMBS.2008.4649300.

Abstract

The goal of neonatal seizure detection is the development of a patient independent system to alert staff in the neonatal intensive care unit of ongoing seizures. This study demonstrates the potential in adapting a patient independent classifier using patient specific data. Supervised adaptation is investigated using the basic gradient descent algorithm and least mean squares procedures. An increase in mean ROC area of 3% is obtained for the best performing learning algorithm, yielding an increase in mean accuracy of 7.7% compared to the patient independent algorithm.

摘要

新生儿惊厥检测的目标是开发一种独立于患者的系统,以提醒新生儿重症监护病房的工作人员注意正在发生的惊厥。本研究展示了使用患者特定数据来适配独立于患者的分类器的潜力。使用基本梯度下降算法和最小均方程序对监督适配进行了研究。对于性能最佳的学习算法,平均ROC面积增加了3%,与独立于患者的算法相比,平均准确率提高了7.7%。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验