Suppr超能文献

一种基于小波的新型指标,用于利用头皮脑电图信号检测癫痫发作。

A novel wavelet-based index to detect epileptic seizures using scalp EEG signals.

作者信息

Zandi Ali Shahidi, Dumont Guy A, Javidan Manouchehr, Tafreshi Reza, MacLeod Bernard A, Ries Craig R, Puil Ernie

机构信息

Department of Electrical & Computer Engineering at The University of British Columbia, Vancouver, BC V6T 1Z4, Canada.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2008;2008:919-22. doi: 10.1109/IEMBS.2008.4649304.

Abstract

In this paper, we propose a novel wavelet-based algorithm for the detection of epileptic seizures. The algorithm is based on the recognition of rhythmic activities associated with ictal states in surface EEG recordings. Using a moving-window analysis, we first decomposed each EEG segment into a wavelet packet tree. Then, we extracted the coefficients corresponding to the frequency band of interest defined for rhythmic activities. Finally, a normalized index sensitive to both the rhythmicity and energy of the EEG signal was derived, based on the resulting coefficients. In our study, we evaluated this combined index for real-time detection of epileptic seizures using a dataset of approximately 11.5 hours of multichannel scalp EEG recordings from three patients and compared it to our previously proposed wavelet-based index. In this dataset, the novel combined index detected all epileptic seizures with a false detection rate of 0.52/hr.

摘要

在本文中,我们提出了一种用于检测癫痫发作的基于小波的新型算法。该算法基于对表面脑电图记录中与发作期状态相关的节律性活动的识别。通过移动窗口分析,我们首先将每个脑电图片段分解为一个小波包树。然后,我们提取了与为节律性活动定义的感兴趣频带相对应的系数。最后,基于所得系数得出了一个对脑电图信号的节律性和能量均敏感的归一化指标。在我们的研究中,我们使用来自三名患者的约11.5小时多通道头皮脑电图记录数据集,评估了该组合指标用于癫痫发作实时检测的性能,并将其与我们先前提出的基于小波的指标进行了比较。在该数据集中,新型组合指标检测到了所有癫痫发作,误检率为0.52次/小时。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验