Suppr超能文献

一种使用经验小波变换进行针对特定患者的脑电图癫痫发作检测的多变量方法。

A Multivariate Approach for Patient-Specific EEG Seizure Detection Using Empirical Wavelet Transform.

作者信息

Bhattacharyya Abhijit, Pachori Ram Bilas

出版信息

IEEE Trans Biomed Eng. 2017 Sep;64(9):2003-2015. doi: 10.1109/TBME.2017.2650259. Epub 2017 Jan 9.

Abstract

OBJECTIVE

This paper investigates the multivariate oscillatory nature of electroencephalogram (EEG) signals in adaptive frequency scales for epileptic seizure detection.

METHODS

The empirical wavelet transform (EWT) has been explored for the multivariate signals in order to determine the joint instantaneous amplitudes and frequencies in signal adaptive frequency scales. The proposed multivariate extension of EWT has been studied on multivariate multicomponent synthetic signal, as well as on multivariate EEG signals of Children's Hospital Boston-Massachusetts Institute of Technology (CHB-MIT) scalp EEG database. In a moving-window-based analysis, 2-s-duration multivariate EEG signal epochs containing five automatically selected channels have been decomposed and three features have been extracted from each 1-s part of the 2-s-duration joint instantaneous amplitudes of multivariate EEG signals. The extracted features from each oscillatory level have been processed using a proposed feature processing step and joint features have been computed in order to achieve better discrimination of seizure and seizure-free EEG signal epochs.

RESULTS

The proposed detection method has been evaluated over 177 h of EEG records using six classifiers. We have achieved average sensitivity, specificity, and accuracy values as 97.91%, 99.57%, and 99.41%, respectively, using tenfold cross-validation method, which are higher than the compared state of art methods studied on this database.

CONCLUSION

Efficient detection of epileptic seizure is achieved when seizure events appear for long duration in hours long EEG recordings.

SIGNIFICANCE

The proposed method develops time-frequency plane for multivariate signals and builds patient-specific models for EEG seizure detection.

摘要

目的

本文研究脑电图(EEG)信号在自适应频率尺度下的多变量振荡特性,用于癫痫发作检测。

方法

对多变量信号采用经验小波变换(EWT),以确定信号自适应频率尺度下的联合瞬时幅度和频率。EWT的多变量扩展已在多变量多分量合成信号以及波士顿儿童医院-麻省理工学院(CHB-MIT)头皮脑电图数据库的多变量EEG信号上进行了研究。在基于移动窗口的分析中,对包含五个自动选择通道的2秒时长的多变量EEG信号片段进行分解,并从多变量EEG信号2秒时长联合瞬时幅度的每个1秒部分提取三个特征。使用提出的特征处理步骤对从每个振荡水平提取的特征进行处理,并计算联合特征,以更好地区分癫痫发作和无癫痫发作的EEG信号片段。

结果

使用六种分类器对177小时的EEG记录评估了所提出的检测方法。使用十折交叉验证方法,我们分别获得了97.91%、99.57%和99.41%的平均灵敏度、特异性和准确率,高于在此数据库上研究的比较先进方法。

结论

当癫痫发作事件在长达数小时的EEG记录中持续较长时间时,可实现癫痫发作的有效检测。

意义

所提出的方法为多变量信号开发了时频平面,并建立了用于EEG癫痫发作检测的患者特定模型。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验