Göksu Fikri, Ince Nuri Firat, Tadipatri Vijay Aditya, Tewfik Ahmed H
Electrical and Computer Engineering Department, Twin Cities, MN 55455 USA.
Annu Int Conf IEEE Eng Med Biol Soc. 2008;2008:1001-4. doi: 10.1109/IEMBS.2008.4649324.
We present a new method for the classification of EEG in a brain computer interface by adapting subject specific features in spectral, temporal and spatial domain. For this particular purpose we extend our previous work on ECoG classification based on structural feature dictionary and apply it to extract the spectro-temporal patterns of multichannel EEG recordings related to a motor imagery task. The construction of the feature dictionary based on undecimated wavelet packet transform is extended to block FFT. We evaluate several subset selection algorithms to select a small number of features for final classification. We tested our proposed approach on five subjects of BCI Competition 2005 dataset- IVa. By adapting the wavelet filter for each subject, the algorithm achieved an average classification accuracy of 91.4% The classification results and characteristic of selected features indicate that the proposed algorithm can jointly adapt to EEG patterns in spectro-spatio-temporal domain and provide classification accuracies as good as existing methods used in the literature.
我们提出了一种在脑机接口中通过适配频谱、时间和空间域中特定于个体的特征来对脑电图进行分类的新方法。出于这一特定目的,我们扩展了之前基于结构特征字典的脑皮层电图分类工作,并将其应用于提取与运动想象任务相关的多通道脑电图记录的频谱 - 时间模式。基于非抽取小波包变换构建特征字典的方法扩展到了分块快速傅里叶变换。我们评估了几种子集选择算法,以选择少量特征用于最终分类。我们在脑机接口竞赛2005数据集 - IVa的五个受试者上测试了我们提出的方法。通过为每个受试者适配小波滤波器,该算法实现了91.4%的平均分类准确率。分类结果和所选特征的特性表明,所提出的算法能够在频谱 - 空间 - 时间域中联合适配脑电图模式,并提供与文献中现有方法相当的分类准确率。