Suppr超能文献

用于四类运动想象脑机接口的多类滤波器组公共空间模式

Multi-class filter bank common spatial pattern for four-class motor imagery BCI.

作者信息

Chin Zheng Yang, Ang Kai Keng, Wang Chuanchu, Guan Cuntai, Zhang Haihong

机构信息

Institute for Infocomm Research, Agency for Science, Technology and Research (A*STAR), 1 Fusionopolis Way #21-01 Connexis (South Tower) Singapore 138632.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:571-4. doi: 10.1109/IEMBS.2009.5332383.

Abstract

This paper investigates the classification of multi-class motor imagery for electroencephalogram (EEG)-based Brain-Computer Interface (BCI) using the Filter Bank Common Spatial Pattern (FBCSP) algorithm. The FBCSP algorithm classifies EEG measurements from features constructed using subject-specific temporal-spatial filters. However, the FBCSP algorithm is limited to binary-class motor imagery. Hence, this paper proposes 3 approaches of multi-class extension to the FBCSP algorithm: One-versus-Rest, Pair-Wise and Divide-and-Conquer. These approaches decompose the multi-class problem into several binary-class problems. The study is conducted on the BCI Competition IV dataset IIa, which comprises single-trial EEG data from 9 subjects performing 4-class motor imagery of left-hand, right-hand, foot and tongue actions. The results showed that the multi-class FBCSP algorithm could extract features that matched neurophysiological knowledge, and yielded the best performance on the evaluation data compared to other international submissions.

摘要

本文研究了基于脑电图(EEG)的脑机接口(BCI)中多类运动想象的分类,采用滤波器组公共空间模式(FBCSP)算法。FBCSP算法根据使用特定受试者时空滤波器构建的特征对EEG测量值进行分类。然而,FBCSP算法仅限于二分类运动想象。因此,本文提出了FBCSP算法的3种多类扩展方法:一对多、逐对和分而治之。这些方法将多类问题分解为几个二分类问题。该研究在BCI竞赛IV数据集IIa上进行,该数据集包含9名受试者执行左手、右手、脚和舌头动作的4类运动想象的单次试验EEG数据。结果表明,多类FBCSP算法能够提取与神经生理学知识相匹配的特征,并且在评估数据上比其他国际提交的结果表现最佳。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验