Dauwels Justin, Weber Theophane, Vialatte Francois, Cichocki Andrzej
MIT, Cambridge, MA 02139, USA.
Annu Int Conf IEEE Eng Med Biol Soc. 2008;2008:2657-60. doi: 10.1109/IEMBS.2008.4649748.
A novel approach is proposed to quantify the similarity (or 'synchrony') of multiple multi-dimensional point processes. It is based on a generative stochastic model that describes how two or more point processes are related to each other. As an application, the problem of diagnosing Alzheimer's disease (AD) from multi-channel EEG recordings is considered. The proposed method seems to be more sensitive to AD induced perturbations in EEG synchrony than classical similarity measures.
提出了一种新颖的方法来量化多个多维点过程的相似性(或“同步性”)。它基于一个生成随机模型,该模型描述了两个或多个点过程如何相互关联。作为一个应用,考虑了从多通道脑电图记录中诊断阿尔茨海默病(AD)的问题。与传统的相似性度量相比,所提出的方法似乎对AD引起的脑电图同步性扰动更为敏感。