Suppr超能文献

量化多个点过程的相似性及其在基于脑电图的阿尔茨海默病早期诊断中的应用。

Quantifying the similarity of multiple point processes with application to early diagnosis of Alzheimer's disease from EEG.

作者信息

Dauwels Justin, Weber Theophane, Vialatte Francois, Cichocki Andrzej

机构信息

MIT, Cambridge, MA 02139, USA.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2008;2008:2657-60. doi: 10.1109/IEMBS.2008.4649748.

Abstract

A novel approach is proposed to quantify the similarity (or 'synchrony') of multiple multi-dimensional point processes. It is based on a generative stochastic model that describes how two or more point processes are related to each other. As an application, the problem of diagnosing Alzheimer's disease (AD) from multi-channel EEG recordings is considered. The proposed method seems to be more sensitive to AD induced perturbations in EEG synchrony than classical similarity measures.

摘要

提出了一种新颖的方法来量化多个多维点过程的相似性(或“同步性”)。它基于一个生成随机模型,该模型描述了两个或多个点过程如何相互关联。作为一个应用,考虑了从多通道脑电图记录中诊断阿尔茨海默病(AD)的问题。与传统的相似性度量相比,所提出的方法似乎对AD引起的脑电图同步性扰动更为敏感。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验