Suppr超能文献

用于阿尔茨海默病早期诊断的脑电图同步性分析:一项采用多种同步性测量方法和脑电图数据集的研究。

EEG synchrony analysis for early diagnosis of Alzheimer's disease: a study with several synchrony measures and EEG data sets.

作者信息

Dauwels Justin, Vialatte François, Latchoumane Charles, Jeong Jaeseung, Cichocki Andrzej

机构信息

Laboratory for Information and Decision Systems (LIDS), Massachusetts Institute of Technology, Cambridge, MA, USA.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:2224-7. doi: 10.1109/IEMBS.2009.5334862.

Abstract

It has frequently been reported in the medical literature that the EEG of Alzheimer disease (AD) patients is less synchronous than in healthy subjects. In this paper, it is explored whether loss in EEG synchrony can be used to diagnose AD at an early stage. Multiple synchrony measures are applied to two different EEG data sets: (1) EEG of pre-dementia patients and control subjects; (2) EEG of mild AD patients and control subjects; the two data sets are from different patients, different hospitals, and obtained through different recording systems. It is observed that both Granger causality and stochastic event synchrony indicate statistically significant loss of EEG synchrony, for the two data sets; those two synchrony measures are then combined as features in linear and quadratic discriminant analysis (with crossvalidation), yielding classification rates of 83% and 88% for the pre-dementia data set and mild AD data set respectively. These results suggest that loss in EEG synchrony is indicative for early AD.

摘要

医学文献中经常报道,阿尔茨海默病(AD)患者的脑电图(EEG)同步性低于健康受试者。本文探讨了EEG同步性丧失是否可用于早期诊断AD。将多种同步性测量方法应用于两个不同的EEG数据集:(1)痴呆前期患者和对照受试者的EEG;(2)轻度AD患者和对照受试者的EEG;这两个数据集来自不同的患者、不同的医院,并通过不同的记录系统获得。观察到,对于这两个数据集,格兰杰因果关系和随机事件同步性均表明EEG同步性存在统计学上的显著丧失;然后将这两种同步性测量方法作为线性和二次判别分析(交叉验证)中的特征进行组合,痴呆前期数据集和轻度AD数据集的分类率分别为83%和88%。这些结果表明,EEG同步性丧失可作为早期AD的指标。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验