Suppr超能文献

基于纹理区域合并的分水岭分割法在医学图像分割中的应用

Medical image segmentation using watershed segmentation with texture-based region merging.

作者信息

Ng H P, Huang S, Ong S H, Foong K C, Goh P S, Nowinski W L

机构信息

Biomedical Imaging Lab, Agency for Science Technology and Research, Singapore.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2008;2008:4039-42. doi: 10.1109/IEMBS.2008.4650096.

Abstract

The use of the watershed algorithm for image segmentation is widespread because it is able to produce a complete division of the image. However, it is susceptible to over-segmentation and in medical image segmentation, this meant that that we do not have good representations of the anatomy. We address this issue by thresholding the gradient magnitude image and performing post-segmentation merging on the initial segmentation map. The automated thresholding technique is based on the histogram of the gradient magnitude map while the post-segmentation merging is based on the similarity in textural features (namely angular second moment, contrast, entropy and inverse difference moment) belonging to two neighboring partitions. When applied to the segmentation of various facial anatomical structures from magnetic resonance (MR) images, the proposed method achieved an overlap index of 92.6% compared to manual contour tracings. It is able to merge more than 80% of the initial partitions, which indicates that a large amount of over-segmentation has been reduced. Results produced using watershed algorithm with and without the proposed and proposed post-segmentation merging are presented for comparisons.

摘要

分水岭算法在图像分割中的应用十分广泛,因为它能够对图像进行完整的分割。然而,该算法容易出现过分割现象,在医学图像分割中,这意味着我们无法很好地呈现解剖结构。我们通过对梯度幅值图像进行阈值处理,并在初始分割图上进行分割后合并来解决这个问题。自动阈值处理技术基于梯度幅值图的直方图,而分割后合并则基于属于两个相邻分区的纹理特征(即角二阶矩、对比度、熵和逆差矩)的相似性。当应用于从磁共振(MR)图像中分割各种面部解剖结构时,与手动轮廓追踪相比,该方法的重叠指数达到了92.6%。它能够合并超过80%的初始分区,这表明大量的过分割现象已得到减少。为作比较,还给出了使用分水岭算法以及使用了所提出的分割后合并和未使用所提出的分割后合并的结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验