Suppr超能文献

用于术后前交叉韧带磁共振成像中金属伪影去除的自动分割流程的进展

Advancement of an automatic segmentation pipeline for metallic artifact removal in post-surgical ACL MRI.

作者信息

Barnes Dominique A, Murray Crystal J, Molino Janine, Beveridge Jillian E, Kiapour Ata M, Murray Martha M, Fleming Braden C

机构信息

Department of Orthopaedics, Warren Alpert Medical School of Brown University, Providence, RI, USA; Rhode Island Hospital, Providence, RI, USA; Institute for Biology, Engineering, and Medicine, Brown University, Providence, RI, USA.

Department of Orthopaedics, Warren Alpert Medical School of Brown University, Providence, RI, USA; Rhode Island Hospital, Providence, RI, USA.

出版信息

Magn Reson Imaging. 2025 Sep;121:110417. doi: 10.1016/j.mri.2025.110417. Epub 2025 May 14.

Abstract

Magnetic resonance imaging (MRI) has the potential to identify post-operative risk factors for re-tearing an anterior cruciate ligament (ACL) using a combination of imaging signal intensity (SI) and cross-sectional area measurements of the healing ACL. During surgery micro-debris can result from drilling the osseous tunnels for graft and/or suture insertion. The debris presents a limitation when using post-surgical MRI to assess reinjury risk as it causes rapid magnetic field variations during acquisition, leading to signal loss within a voxel. The present study demonstrates how K-means clustering can refine an automatic segmentation algorithm to remove the lost signal intensity values induced by the artifacts in the image. MRI data were obtained from 82 patients enrolled in three prospective clinical trials of ACL surgery. Constructive Interference in Steady State MRIs were collected at 6 months post-operation. Manual segmentation of the ACL with metallic artifacts removed served as the gold standard. The accuracy of the automatic ACL segmentations was compared using Dice coefficient, sensitivity, and precision. The performance of the automatic segmentation was comparable to manual segmentation (Dice coefficient = .81, precision = .81, sensitivity = .82). The normalized average signal intensity was calculated as 1.06 (±0.25) for the automatic and 1.04 (±0.23) for the manual segmentation, yielding a difference of 2%. These metrics emphasize the automatic segmentation model's ability to precisely capture ACL signal intensity while excluding artifact regions. The automatic artifact segmentation model described here could enhance qMRI's clinical utility by allowing for more accurate and time-efficient segmentations of the ACL.

摘要

磁共振成像(MRI)有潜力通过结合成像信号强度(SI)和愈合中的前交叉韧带(ACL)的横截面积测量,来识别ACL再次撕裂的术后风险因素。手术过程中,在钻骨隧道以植入移植物和/或缝线时会产生微碎片。当使用术后MRI评估再损伤风险时,这些碎片会带来限制,因为它们在采集过程中会导致快速的磁场变化,从而导致体素内信号丢失。本研究展示了K均值聚类如何改进自动分割算法,以去除图像中伪影引起的信号强度值丢失。MRI数据来自82名参加三项ACL手术前瞻性临床试验的患者。在术后6个月收集稳态磁共振成像的建设性干扰图像。去除金属伪影后的ACL手动分割作为金标准。使用Dice系数、灵敏度和精度比较自动ACL分割的准确性。自动分割的性能与手动分割相当(Dice系数 = 0.81,精度 = 0.81,灵敏度 = 0.82)。自动分割的归一化平均信号强度计算为1.06(±0.25),手动分割为1.04(±0.23),差异为2%。这些指标强调了自动分割模型在排除伪影区域的同时精确捕捉ACL信号强度的能力。这里描述的自动伪影分割模型可以通过实现更准确、更高效的ACL分割来提高定量MRI的临床效用。

相似文献

1
Advancement of an automatic segmentation pipeline for metallic artifact removal in post-surgical ACL MRI.
Magn Reson Imaging. 2025 Sep;121:110417. doi: 10.1016/j.mri.2025.110417. Epub 2025 May 14.
2
A transfer learning approach for automatic segmentation of the surgically treated anterior cruciate ligament.
J Orthop Res. 2022 Jan;40(1):277-284. doi: 10.1002/jor.24984. Epub 2021 Jan 27.
4
5
Deep learning-based automated detection and segmentation of bone and traumatic bone marrow lesions from MRI following an acute ACL tear.
Comput Biol Med. 2024 Aug;178:108791. doi: 10.1016/j.compbiomed.2024.108791. Epub 2024 Jun 20.
7
Automated segmentation of the healed anterior cruciate ligament from T * relaxometry MRI scans.
J Orthop Res. 2023 Mar;41(3):649-656. doi: 10.1002/jor.25390. Epub 2022 Jun 11.
10
Anterior cruciate ligament autograft maturation on sequential postoperative MRI is not correlated with clinical outcome and anterior knee stability.
Knee Surg Sports Traumatol Arthrosc. 2022 Oct;30(10):3258-3267. doi: 10.1007/s00167-021-06777-4. Epub 2021 Nov 5.

本文引用的文献

1
Quantitative MRI Biomarkers to Predict Risk of Reinjury Within 2 Years After Bridge-Enhanced ACL Restoration.
Am J Sports Med. 2023 Feb;51(2):413-421. doi: 10.1177/03635465221142323. Epub 2023 Jan 16.
2
Preoperative Risk Factors for Subsequent Ipsilateral ACL Revision Surgery After an ACL Restoration Procedure.
Am J Sports Med. 2023 Jan;51(1):49-57. doi: 10.1177/03635465221137873. Epub 2022 Nov 22.
3
Automated segmentation of the healed anterior cruciate ligament from T * relaxometry MRI scans.
J Orthop Res. 2023 Mar;41(3):649-656. doi: 10.1002/jor.25390. Epub 2022 Jun 11.
5
A transfer learning approach for automatic segmentation of the surgically treated anterior cruciate ligament.
J Orthop Res. 2022 Jan;40(1):277-284. doi: 10.1002/jor.24984. Epub 2021 Jan 27.
6
Automated magnetic resonance image segmentation of the anterior cruciate ligament.
J Orthop Res. 2021 Apr;39(4):831-840. doi: 10.1002/jor.24926. Epub 2020 Dec 7.
7
Quantitative Assessment of In Vivo Human Anterior Cruciate Ligament Autograft Remodeling: A 3-Dimensional UTE-T2* Imaging Study.
Am J Sports Med. 2020 Oct;48(12):2939-2947. doi: 10.1177/0363546520949855. Epub 2020 Sep 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验