Suppr超能文献

一种用于重建扩展皮质电流源的新型稀疏源成像方法。

A novel sparse source imaging in reconstructing extended cortical current sources.

作者信息

Ding Lei

机构信息

University of Oklahoma, Norman, USA.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2008;2008:4555-8. doi: 10.1109/IEMBS.2008.4650226.

Abstract

We have developed a new sparse source imaging (SSI) method with the use of the L1-norm in EEG inverse problems to reconstruct extended cortical current sources. The new SSI method explores the sparseness in cortical current density variation maps (the transform domain) other than in the cortical current density maps (the original domain) from previously reported SSI methods. The new SSI is assessed by a series of computer simulations. The performance of SSI is compared with the well-known L2-norm MNE using the AUC metric. Our present simulation data indicate that the new SSI has significantly improved performance in reconstructing extended cortical current sources and estimating their cortical extents. The L2-norm MNE shows relatively poor performance in the same source imaging tasks. The new SSI method is also applicable to MEG source imaging.

摘要

我们开发了一种新的稀疏源成像(SSI)方法,该方法在脑电图逆问题中使用L1范数来重建扩展的皮质电流源。新的SSI方法探索的是皮质电流密度变化图(变换域)中的稀疏性,而非先前报道的SSI方法所关注的皮质电流密度图(原始域)中的稀疏性。通过一系列计算机模拟对新的SSI进行了评估。使用AUC指标将SSI的性能与著名的L2范数最小范数估计(MNE)方法进行了比较。我们目前的模拟数据表明,新的SSI在重建扩展的皮质电流源及其皮质范围估计方面具有显著提高的性能。L2范数MNE在相同的源成像任务中表现相对较差。新的SSI方法也适用于脑磁图源成像。

相似文献

1
A novel sparse source imaging in reconstructing extended cortical current sources.
Annu Int Conf IEEE Eng Med Biol Soc. 2008;2008:4555-8. doi: 10.1109/IEMBS.2008.4650226.
2
Reconstructing spatially extended brain sources via enforcing multiple transform sparseness.
Neuroimage. 2014 Feb 1;86:280-93. doi: 10.1016/j.neuroimage.2013.09.070. Epub 2013 Oct 5.
3
L1-norm and L2-norm neuroimaging methods in reconstructing extended cortical sources from EEG.
Annu Int Conf IEEE Eng Med Biol Soc. 2009;2009:1922-5. doi: 10.1109/IEMBS.2009.5333925.
4
Investigation of EEG and MEG source imaging accuracy in reconstructing extended cortical sources.
Annu Int Conf IEEE Eng Med Biol Soc. 2011;2011:7013-6. doi: 10.1109/IEMBS.2011.6091773.
5
Reconstructing cortical current density by exploring sparseness in the transform domain.
Phys Med Biol. 2009 May 7;54(9):2683-97. doi: 10.1088/0031-9155/54/9/006. Epub 2009 Apr 8.
7
A new wavelet transform to sparsely represent cortical current densities for EEG/MEG inverse problems.
Comput Methods Programs Biomed. 2013 Aug;111(2):376-88. doi: 10.1016/j.cmpb.2013.04.015. Epub 2013 May 21.
8
Wavelet based sparse source imaging technique.
Annu Int Conf IEEE Eng Med Biol Soc. 2013;2013:5418-21. doi: 10.1109/EMBC.2013.6610774.
9
Assessing and improving the spatial accuracy in MEG source localization by depth-weighted minimum-norm estimates.
Neuroimage. 2006 May 15;31(1):160-71. doi: 10.1016/j.neuroimage.2005.11.054. Epub 2006 Mar 6.
10
Sparse source imaging in electroencephalography with accurate field modeling.
Hum Brain Mapp. 2008 Sep;29(9):1053-67. doi: 10.1002/hbm.20448.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验