David Olivier, Garnero Line, Cosmelli Diego, Varela Francisco J
Cognitive Neuroscience and Brain Imaging Laboratory, CNRS UPR 640, Hôpital de La Salpêtrière, Paris, France.
IEEE Trans Biomed Eng. 2002 Sep;49(9):975-87. doi: 10.1109/TBME.2002.802013.
There is a growing interest in elucidating the role of specific patterns of neural dynamics--such as transient synchronization between distant cell assemblies--in brain functions. Magnetoencephalography (MEG)/electroencephalography (EEG) recordings consist in the spatial integration of the activity from large and multiple remotely located populations of neurons. Massive diffusive effects and poor signal-to-noise ratio (SNR) preclude the proper estimation of indices related to cortical dynamics from nonaveraged MEG/EEG surface recordings. Source localization from MEG/EEG surface recordings with its excellent time resolution could contribute to a better understanding of the working brain. We propose a robust and original approach to the MEG/EEG distributed inverse problem to better estimate neural dynamics of cortical sources. For this, the surrogate data method is introduced in the MEG/EEG inverse problem framework. We apply this approach on nonaveraged data with poor SNR using the minimum norm estimator and find source localization results weakly sensitive to noise. Surrogates allow the reduction of the source space in order to reconstruct MEG/EEG data with reduced biases in both source localization and time-series dynamics. Monte Carlo simulations and results obtained from real MEG data indicate it is possible to estimate non invasively an important part of cortical source locations and dynamic and, therefore, to reveal brain functional networks.
人们越来越关注阐明特定神经动力学模式——如远距离细胞集合之间的瞬时同步——在脑功能中的作用。脑磁图(MEG)/脑电图(EEG)记录由大量位于远处的神经元群体活动的空间整合组成。大量的扩散效应和低信噪比(SNR)使得无法从非平均的MEG/EEG表面记录中正确估计与皮质动力学相关的指标。具有出色时间分辨率的MEG/EEG表面记录的源定位有助于更好地理解工作中的大脑。我们提出了一种稳健且新颖的方法来解决MEG/EEG分布式逆问题,以更好地估计皮质源的神经动力学。为此,在MEG/EEG逆问题框架中引入了替代数据方法。我们使用最小范数估计器将此方法应用于具有低SNR的非平均数据,并发现源定位结果对噪声的敏感性较弱。替代数据允许减少源空间,以便在源定位和时间序列动力学方面以减少偏差的方式重建MEG/EEG数据。蒙特卡罗模拟和从真实MEG数据获得的结果表明,有可能非侵入性地估计皮质源位置和动态的重要部分,从而揭示脑功能网络。