Suppr超能文献

使用多层感知器神经网络自动检测视网膜图像中的红色病变。

Automatic detection of red lesions in retinal images using a multilayer perceptron neural network.

作者信息

García María, Sánchez Clara I, López María I, Díez Ana, Hornero Roberto

机构信息

Biomedical Engineering Group (GIB), Dpto. TSCIT, University of Valladolid, Camino del Cementerio s/n, 47011 Valladolid, Spain.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2008;2008:5425-8. doi: 10.1109/IEMBS.2008.4650441.

Abstract

Diabetic Retinopathy (DR) is an important cause of visual impairment among people of working age in industrialized countries. Automatic detection of DR clinical signs in retinal images would be an important contribution to the diagnosis and screening of the disease. The aim of the present study is to automatically detect some of these clinical signs: red lesions (RLs), like hemorrhages (HEs) and microaneurysms (MAs). Based on their properties, we extracted a set of features from image regions and selected the subset which best discriminated between these RLs and the retinal background. A multilayer perceptron (MLP) classifier was subsequently used to obtain the final segmentation of RLs. Our database was composed of 100 images with variable color, brightness, and quality. 50 of them were used to obtain the examples to train the MLP classifier. The remaining 50 images were used to test the performance of the method. Using a lesion based criterion, we reached a mean sensitivity of 86.1% and a mean positive predictive value of 71.4%. With an image-based criterion, we achieved a 100% mean sensitivity, 60.0% mean specificity and 80.0% mean accuracy.

摘要

糖尿病性视网膜病变(DR)是工业化国家劳动年龄人群视力损害的重要原因。在视网膜图像中自动检测DR临床体征将对该疾病的诊断和筛查做出重要贡献。本研究的目的是自动检测其中一些临床体征:红色病变(RLs),如出血(HEs)和微动脉瘤(MAs)。基于它们的特性,我们从图像区域中提取了一组特征,并选择了能最好地区分这些RLs与视网膜背景的子集。随后使用多层感知器(MLP)分类器来获得RLs的最终分割结果。我们的数据库由100张颜色、亮度和质量各异的图像组成。其中50张用于获取训练MLP分类器的示例。其余50张图像用于测试该方法的性能。使用基于病变的标准,我们达到了86.1%的平均敏感度和71.4%的平均阳性预测值。使用基于图像的标准,我们实现了100%的平均敏感度、60.0%的平均特异性和80.0%的平均准确率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验