Biomedical Engineering Group, Universidad de Valladolid, 47011 Valladolid, Spain.
Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 28029 Madrid, Spain.
Sensors (Basel). 2020 Nov 16;20(22):6549. doi: 10.3390/s20226549.
Diabetic retinopathy (DR) is characterized by the presence of red lesions (RLs), such as microaneurysms and hemorrhages, and bright lesions, such as exudates (EXs). Early DR diagnosis is paramount to prevent serious sight damage. Computer-assisted diagnostic systems are based on the detection of those lesions through the analysis of fundus images. In this paper, a novel method is proposed for the automatic detection of RLs and EXs. As the main contribution, the fundus image was decomposed into various layers, including the lesion candidates, the reflective features of the retina, and the choroidal vasculature visible in tigroid retinas. We used a proprietary database containing 564 images, randomly divided into a training set and a test set, and the public database DiaretDB1 to verify the robustness of the algorithm. Lesion detection results were computed per pixel and per image. Using the proprietary database, 88.34% per-image accuracy (ACC), 91.07% per-pixel positive predictive value (PPV), and 85.25% per-pixel sensitivity (SE) were reached for the detection of RLs. Using the public database, 90.16% ACC, 96.26% PPV_, and 84.79% SE were obtained. As for the detection of EXs, 95.41% ACC, 96.01% PPV_, and 89.42% SE_ were reached with the proprietary database. Using the public database, 91.80% ACC, 98.59% PPV, and 91.65% SE were obtained. The proposed method could be useful to aid in the diagnosis of DR, reducing the workload of specialists and improving the attention to diabetic patients.
糖尿病性视网膜病变(DR)的特征是存在红色病变(RLs),如微动脉瘤和出血,以及明亮病变,如渗出物(EXs)。早期 DR 诊断对于防止严重视力损害至关重要。计算机辅助诊断系统基于通过眼底图像分析检测这些病变。在本文中,提出了一种用于自动检测 RL 和 EX 的新方法。作为主要贡献,将眼底图像分解为多个层,包括病变候选物、视网膜的反射特征和在鲷鱼眼中可见的脉络膜血管。我们使用了包含 564 张图像的专有的数据库,将其随机分为训练集和测试集,并使用公共数据库 DiaretDB1 来验证算法的稳健性。对每像素和每张图像计算病变检测结果。使用专有的数据库,达到了 88.34%的每张图像准确率(ACC)、91.07%的每像素阳性预测值(PPV)和 85.25%的每像素灵敏度(SE),用于 RL 的检测。使用公共数据库,获得了 90.16%的 ACC、96.26%的 PPV_和 84.79%的 SE。对于 EX 的检测,使用专有的数据库,达到了 95.41%的 ACC、96.01%的 PPV_和 89.42%的 SE。使用公共数据库,获得了 91.80%的 ACC、98.59%的 PPV 和 91.65%的 SE。该方法可用于辅助 DR 的诊断,减轻专家的工作量并提高对糖尿病患者的关注。