Suppr超能文献

室性早搏的自动化患者特异性分类

Automated patient-specific classification of premature ventricular contractions.

作者信息

Ince Turker, Kiranyaz Serkan, Gabbouj Moncef

机构信息

Izmir University of Economics, Turkey.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2008;2008:5474-7. doi: 10.1109/IEMBS.2008.4650453.

Abstract

In this paper, we present an automated patient-specific electrocardiogram (ECG) beat classifier designed for accurate detection of premature ventricular contractions (PVCs). In the proposed feature extraction scheme, the principal component analysis (PCA) is applied to the dyadic wavelet transform (DWT) of the ECG signal to extract morphological ECG features, which are then combined with the temporal features to form a resultant efficient feature vector. For the classification scheme, we selected the feed-forward artificial neural networks (ANNs) optimally designed by the multi-dimensional particle swarm optimization (MD-PSO) technique, which evolves the structure and weights of the network specifically for each patient. Training data for the ANN classifier include both global (total of 150 representative beats randomly sampled from each class in selected training files) and local (the first 5 min of a patient's ECG recording) training patterns. Simulation results using 40 files in the MIT/BIH arrhythmia database achieved high average accuracy of 97% for differentiating normal, PVC, and other beats.

摘要

在本文中,我们提出了一种针对特定患者的自动心电图(ECG)搏动分类器,旨在准确检测室性早搏(PVC)。在所提出的特征提取方案中,主成分分析(PCA)应用于ECG信号的二进小波变换(DWT),以提取ECG形态特征,然后将其与时间特征相结合,形成一个有效的特征向量。对于分类方案,我们选择了通过多维粒子群优化(MD - PSO)技术优化设计的前馈人工神经网络(ANN),该技术针对每个患者专门优化网络结构和权重。ANN分类器的训练数据包括全局(从选定训练文件中的每个类别中随机抽取的总共150个代表性搏动)和局部(患者ECG记录的前5分钟)训练模式。使用麻省理工学院/贝斯以色列女执事医疗中心(MIT/BIH)心律失常数据库中的40个文件进行的模拟结果表明,在区分正常搏动、PVC和其他搏动方面,平均准确率高达97%。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验