Wilson Noah A, U-Shumays Robin Ab, Lieberman Kate, Akeson Mark, Dunbar William B
Baskin School of Engineering, University of California, Santa Cruz, 1156 High Street, CA, USA.
Annu Int Conf IEEE Eng Med Biol Soc. 2008;2008:5745-8. doi: 10.1109/IEMBS.2008.4650519.
This paper demonstrates feedback voltage control of a single DNA molecule tethered in a biological nanopore. The nanopore device monitors ionic current through a single protein pore inserted in a lipid bilayer. The limiting aperture of the pore is just sufficient (1.5 nm diameter) to accommodate single-stranded DNA. The tethered DNA is double stranded on each end, with a single stranded segment that traverses the pore. Voltage control is used to regulate the motion of the tethered DNA, for repeated capture and subsequent voltage-promoted dissociation of DNA-binding enzymes above the nanopore. In initial experiments using the Klenow fragment of Escherichia coli DNA polymerase I, control of 8 independent tethered DNA molecules yielded 337 dissociation events in a period of 380 seconds. The resulting distribution of DNA-protein dissociation times can be used to model the free energy profile of dissociation. Moreover, the approach is applicable to numerous enzymes that bind or modify DNA or RNA including exonucleases, kinases, and other polymerases.
本文展示了对束缚在生物纳米孔中的单个DNA分子的反馈电压控制。纳米孔装置监测通过插入脂质双分子层中的单个蛋白质孔的离子电流。孔的极限孔径刚好足以(直径1.5纳米)容纳单链DNA。束缚的DNA两端是双链的,有一个单链片段穿过孔。电压控制用于调节束缚DNA的运动,以便在纳米孔上方重复捕获并随后通过电压促进DNA结合酶的解离。在使用大肠杆菌DNA聚合酶I的Klenow片段的初始实验中,对8个独立的束缚DNA分子进行控制,在380秒内产生了337次解离事件。由此产生的DNA-蛋白质解离时间分布可用于模拟解离的自由能分布。此外,该方法适用于许多结合或修饰DNA或RNA的酶,包括核酸外切酶、激酶和其他聚合酶。