Suppr超能文献

基于定量荧光的内镜探针评估光触发脂质体阿霉素的光通量率依赖性动力学

Fluence rate-dependent kinetics of light-triggered liposomal doxorubicin assessed by quantitative fluorescence-based endoscopic probe.

作者信息

Rohrbach Daniel J, Carter Kevin A, Luo Dandan, Shao Shuai, Aygun-Sunar Semra, Lovell Jonathan F, Sunar Ulas

机构信息

Agilent Technologies, Winooski, Vermont, VT 05404, USA.

Department of Biomedical Engineering, University at Buffalo, Buffalo, NY 14260, USA.

出版信息

bioRxiv. 2024 Dec 29:2024.12.29.630668. doi: 10.1101/2024.12.29.630668.

Abstract

Liposomal doxorubicin (Dox), a treatment option for recurrent ovarian cancer, often suffers from suboptimal biodistribution and efficacy, which might be addressed with precision drug delivery systems. Here, we introduce a catheter-based endoscopic probe designed for multispectral, quantitative monitoring of light-triggered drug release. This tool utilizes red-light photosensitive porphyrin-phospholipid (PoP), which is encapsulated in liposome bilayers to enhance targeted drug delivery. By integrating diffuse reflectance and fluorescence spectroscopy, our approach not only corrects the effects of tissue optical properties but also ensures accurate drug delivery to deep-seated tumors. Preliminary results validate the probe effectiveness in controlled settings, highlighting its potential for future clinical adaptation. This study sets the stage for in vivo applications, enabling the exploration of next-generation treatment paradigms for the management of cancer by optimizing chemotherapy administration with precision and control.

摘要

脂质体阿霉素(Dox)是复发性卵巢癌的一种治疗选择,但常常存在生物分布和疗效欠佳的问题,而精确给药系统或许可以解决这些问题。在此,我们介绍一种基于导管的内镜探头,其设计用于对光触发药物释放进行多光谱定量监测。该工具利用红光光敏卟啉 - 磷脂(PoP),它被包裹在脂质体双层中以增强靶向给药。通过整合漫反射和荧光光谱,我们的方法不仅校正了组织光学特性的影响,还确保了将药物准确递送至深部肿瘤。初步结果验证了该探头在可控环境中的有效性,突出了其未来临床应用的潜力。本研究为体内应用奠定了基础,通过精确控制化疗给药,能够探索用于癌症治疗的下一代治疗模式。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5054/11703176/a499c3b59cfa/nihpp-2024.12.29.630668v1-f0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验