Suppr超能文献

基因-基因相互作用分析中多因素降维分类器的新评估方法。

New evaluation measures for multifactor dimensionality reduction classifiers in gene-gene interaction analysis.

作者信息

Namkung Junghyun, Kim Kyunga, Yi Sungon, Chung Wonil, Kwon Min-Seok, Park Taesung

机构信息

Bioinformatics Program, Seoul National University, Seoul 151-747, Korea.

出版信息

Bioinformatics. 2009 Feb 1;25(3):338-45. doi: 10.1093/bioinformatics/btn629. Epub 2009 Jan 22.

Abstract

MOTIVATION

Gene-gene interactions are important contributors to complex biological traits. Multifactor dimensionality reduction (MDR) is a method to analyze gene-gene interactions and has been applied to many genetics studies of complex diseases. In order to identify the best interaction model associated with disease susceptibility, MDR classifiers corresponding to interaction models has been constructed and evaluated as a predictor of disease status via a certain measure such as balanced accuracy (BA). It has been shown that the performance of MDR tends to depend on the choice of the evaluation measures.

RESULTS

In this article, we introduce two types of new evaluation measures. First, we develop weighted BA (wBA) that utilizes the quantitative information on the effect size of each multi-locus genotype on a trait. Second, we employ ordinal association measures to assess the performance of MDR classifiers. Simulation studies were conducted to compare the proposed measures with BA, a current measure. Our results showed that the wBA and tau(b) improved the power of MDR in detecting gene-gene interactions. Noticeably, the power increment was higher when data contains the greater number of genetic markers. Finally, we applied the proposed evaluation measures to real data.

摘要

动机

基因-基因相互作用是复杂生物学性状的重要影响因素。多因素降维法(MDR)是一种分析基因-基因相互作用的方法,已应用于许多复杂疾病的遗传学研究。为了识别与疾病易感性相关的最佳相互作用模型,已构建了与相互作用模型对应的MDR分类器,并通过诸如平衡准确率(BA)等某种度量作为疾病状态的预测指标进行评估。研究表明,MDR的性能往往取决于评估度量的选择。

结果

在本文中,我们引入了两种新型评估度量。首先,我们开发了加权BA(wBA),它利用了每个多位点基因型对性状效应大小的定量信息。其次,我们采用有序关联度量来评估MDR分类器的性能。进行了模拟研究,以将所提出的度量与当前的度量BA进行比较。我们的结果表明,wBA和tau(b)提高了MDR检测基因-基因相互作用的效能。值得注意的是,当数据包含更多数量的遗传标记时,效能增量更高。最后,我们将所提出的评估度量应用于实际数据。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验