Yang Cheng-Hong, Lin Yu-Da, Yang Cheng-San, Chuang Li-Yeh
Department of Electronic Engineering, National Kaohsiung University of Applied Sciences, Kaohsiung, Taiwan.
Department of Plastic Surgery, Chia-Yi Christian Hospital, Chiayi, Taiwan.
BMC Genomics. 2015 Jul 1;16(1):489. doi: 10.1186/s12864-015-1717-8.
Multifactor dimensionality reduction (MDR) is widely used to analyze interactions of genes to determine the complex relationship between diseases and polymorphisms in humans. However, the astronomical number of high-order combinations makes MDR a highly time-consuming process which can be difficult to implement for multiple tests to identify more complex interactions between genes. This study proposes a new framework, named fast MDR (FMDR), which is a greedy search strategy based on the joint effect property.
Six models with different minor allele frequencies (MAFs) and different sample sizes were used to generate the six simulation data sets. A real data set was obtained from the mitochondrial D-loop of chronic dialysis patients. Comparison of results from the simulation data and real data sets showed that FMDR identified significant gene-gene interaction with less computational complexity than the MDR in high-order interaction analysis.
FMDR improves the MDR difficulties associated with the computational loading of high-order SNPs and can be used to evaluate the relative effects of each individual SNP on disease susceptibility. FMDR is freely available at http://bioinfo.kmu.edu.tw/FMDR.rar .
多因素降维法(MDR)被广泛用于分析基因间的相互作用,以确定人类疾病与多态性之间的复杂关系。然而,高阶组合的数量庞大,使得MDR成为一个耗时极长的过程,对于多项测试而言可能难以实施,无法识别基因间更复杂的相互作用。本研究提出了一个名为快速MDR(FMDR)的新框架,这是一种基于联合效应属性的贪心搜索策略。
使用六个具有不同次要等位基因频率(MAF)和不同样本量的模型生成了六个模拟数据集。从慢性透析患者的线粒体D环获得了一个真实数据集。模拟数据集和真实数据集的结果比较表明,在高阶相互作用分析中,FMDR比MDR识别显著基因-基因相互作用时计算复杂度更低。
FMDR改善了与高阶单核苷酸多态性(SNP)计算负荷相关的MDR难题,可用于评估每个个体SNP对疾病易感性的相对影响。FMDR可从http://bioinfo.kmu.edu.tw/FMDR.rar免费获取。