Suppr超能文献

基于分层带目标熵最小化曲线解析和 Pearson VII 曲线拟合分析细胞蛋白红外成像光谱。

Hierarchical band-target entropy minimization curve resolution and Pearson VII curve-fitting analysis of cellular protein infrared imaging spectra.

机构信息

Institute of Chemical and Engineering Sciences (ICES), Agency for Science, Technology, and Research (A *STAR), Jurong Island, Singapore, Singapore.

出版信息

Anal Biochem. 2009 Apr 1;387(1):42-53. doi: 10.1016/j.ab.2008.12.026. Epub 2008 Dec 25.

Abstract

A soft-modeling multivariate numerical approach that combines self-modeling curve resolution (SMCR) and mixed Lorentzian-Gaussian curve fitting was successfully implemented for the first time to elucidate spatially and spectroscopically resolved spectral information from infrared imaging data of oral mucosa cells. A novel variant form of the robust band-target entropy minimization (BTEM) SMCR technique, coined as hierarchical BTEM (hBTEM), was introduced to first cluster similar cellular infrared spectra using the unsupervised hierarchical leader-follower cluster analysis (LFCA) and subsequently apply BTEM to clustered subsets of data to reconstruct three protein secondary structure (PSS) pure component spectra-alpha-helix, beta-sheet, and ambiguous structures-that associate with spatially differentiated regions of the cell infrared image. The Pearson VII curve-fitting procedure, which approximates a mixed Lorentzian-Gaussian model for spectral band shape, was used to optimally curve fit the resolved amide I and II bands of various hBTEM reconstructed PSS pure component spectra. The optimized Pearson VII band-shape parameters and peak center positions serve as means to characterize amide bands of PSS spectra found in various cell locations and for approximating their actual amide I/II intensity ratios. The new hBTEM methodology can also be potentially applied to vibrational spectroscopic datasets with dynamic or spatial variations arising from chemical reactions, physical perturbations, pathological states, and the like.

摘要

一种将自建模曲线解析(SMCR)和混合洛伦兹-高斯曲线拟合相结合的软建模多元数值方法首次成功应用于阐明口腔黏膜细胞的红外成像数据的空间和光谱分辨光谱信息。引入了一种新的稳健带目标熵最小化(BTEM)SMCR 技术的变体形式,称为分层 BTEM(hBTEM),首先使用无监督分层领导者跟随者聚类分析(LFCA)对相似的细胞红外光谱进行聚类,然后将 BTEM 应用于数据的聚类子集,以重建与细胞红外图像的空间分化区域相关的三种蛋白质二级结构(PSS)纯组分光谱-α-螺旋、β-折叠和模糊结构。Pearson VII 曲线拟合过程用于优化拟合所解析的酰胺 I 和 II 带的各种 hBTEM 重建 PSS 纯组分光谱。优化后的 Pearson VII 带形参数和峰中心位置可用于表征在不同细胞位置发现的 PSS 光谱的酰胺带,并近似其实际酰胺 I/II 强度比。新的 hBTEM 方法也可以潜在地应用于具有化学反应、物理干扰、病理状态等引起的动态或空间变化的振动光谱数据集。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验