Suppr超能文献

渗透压胁迫下的酪蛋白胶粒分散体

Casein micelle dispersions under osmotic stress.

作者信息

Bouchoux Antoine, Cayemitte Pierre-Emerson, Jardin Julien, Gésan-Guiziou Geneviève, Cabane Bernard

机构信息

INRA, UMR1253, STLO, F-35000 Rennes, France.

出版信息

Biophys J. 2009 Jan;96(2):693-706. doi: 10.1016/j.bpj.2008.10.006.

Abstract

Casein micelles dispersions have been concentrated and equilibrated at different osmotic pressures using equilibrium dialysis. This technique measured an equation of state of the dispersions over a wide range of pressures and concentrations and at different ionic strengths. Three regimes were found. i), A dilute regime in which the osmotic pressure is proportional to the casein concentration. In this regime, the casein micelles are well separated and rarely interact, whereas the osmotic pressure is dominated by the contribution from small residual peptides that are dissolved in the aqueous phase. ii), A transition range that starts when the casein micelles begin to interact through their kappa-casein brushes and ends when the micelles are forced to get into contact with each other. At the end of this regime, the dispersions behave as coherent solids that do not fully redisperse when osmotic stress is released. iii), A concentrated regime in which compression removes water from within the micelles, and increases the fraction of micelles that are irreversibly linked to each other. In this regime the osmotic pressure profile is a power law of the residual free volume. It is well described by a simple model that considers the micelle to be made of dense regions separated by a continuous phase. The amount of water in the dense regions matches the usual hydration of proteins.

摘要

酪蛋白胶粒分散液已通过平衡透析法在不同渗透压下进行了浓缩和平衡。该技术测量了分散液在广泛的压力、浓度和不同离子强度下的状态方程。发现了三种状态。i),稀溶液状态,其中渗透压与酪蛋白浓度成正比。在这种状态下,酪蛋白胶粒彼此分离良好,很少相互作用,而渗透压主要由溶解在水相中的少量残留肽的贡献主导。ii),一个过渡范围,始于酪蛋白胶粒开始通过其κ-酪蛋白刷相互作用,止于胶粒被迫相互接触。在这个状态结束时,分散液表现为连贯的固体,当渗透压释放时不会完全重新分散。iii),浓缩状态,其中压缩从胶粒内部除去水分,并增加彼此不可逆连接的胶粒比例。在这种状态下,渗透压曲线是剩余自由体积的幂律。它可以通过一个简单的模型很好地描述,该模型认为胶粒由由连续相分隔的致密区域组成。致密区域中的水量与蛋白质通常的水合作用相匹配。

相似文献

1
Casein micelle dispersions under osmotic stress.
Biophys J. 2009 Jan;96(2):693-706. doi: 10.1016/j.bpj.2008.10.006.
2
Rheology and phase behavior of dense casein micelle dispersions.
J Chem Phys. 2009 Oct 28;131(16):165106. doi: 10.1063/1.3245956.
4
How to squeeze a sponge: casein micelles under osmotic stress, a SAXS study.
Biophys J. 2010 Dec 1;99(11):3754-62. doi: 10.1016/j.bpj.2010.10.019.
6
Evaporative concentration of skimmed milk: effect on casein micelle hydration, composition, and size.
Food Chem. 2012 Oct 1;134(3):1446-52. doi: 10.1016/j.foodchem.2012.03.053. Epub 2012 Mar 20.
7
Structural heterogeneity of milk casein micelles: a SANS contrast variation study.
Soft Matter. 2015 Jan 14;11(2):389-99. doi: 10.1039/c4sm01705f.
8
Invited review: Understanding the behavior of caseins in milk concentrates.
J Dairy Sci. 2019 Jun;102(6):4772-4782. doi: 10.3168/jds.2018-15943. Epub 2019 Apr 10.
10
Temperature-dependent dynamics of bovine casein micelles in the range 10-40 °C.
Food Chem. 2013 Dec 15;141(4):4081-6. doi: 10.1016/j.foodchem.2013.06.130. Epub 2013 Jul 4.

引用本文的文献

1
Osmotic pressure induces unexpected relaxation of contractile 3D microtissue.
Eur Phys J E Soft Matter. 2025 Jun 24;48(6-7):34. doi: 10.1140/epje/s10189-025-00497-0.
5
Phase Diagram of Dairy Protein Mixes Obtained by Single Droplet Drying Experiments.
Foods. 2022 Feb 16;11(4):562. doi: 10.3390/foods11040562.
6
Microfluidics: A Novel Approach for Dehydration Protein Droplets.
Biosensors (Basel). 2021 Nov 16;11(11):460. doi: 10.3390/bios11110460.
10
Dynamics of liquid-liquid phase separation of wheat gliadins.
Sci Rep. 2018 Sep 27;8(1):14441. doi: 10.1038/s41598-018-32278-5.

本文引用的文献

1
Supramolecular structure of the casein micelle.
J Dairy Sci. 2008 May;91(5):1709-21. doi: 10.3168/jds.2007-0819.
2
Scattering and turbidity study of the dissociation of casein by calcium chelation.
Biomacromolecules. 2008 Jan;9(1):369-75. doi: 10.1021/bm7006899. Epub 2007 Nov 30.
3
Effect of calcium concentration on the structure of casein micelles in thin films.
Biophys J. 2007 Aug 1;93(3):960-8. doi: 10.1529/biophysj.107.106385. Epub 2007 May 11.
4
Biocompatible micro-gel particles from cross-linked casein micelles.
Biomacromolecules. 2007 Apr;8(4):1300-5. doi: 10.1021/bm061070m. Epub 2007 Mar 1.
6
Thin casein films as prepared by spin-coating: influence of film thickness and of pH.
Biomacromolecules. 2006 Jun;7(6):1773-80. doi: 10.1021/bm060088u.
7
Disruption and reassociation of casein micelles under high pressure.
J Dairy Res. 2006 Aug;73(3):294-8. doi: 10.1017/S0022029906001725. Epub 2006 Mar 30.
8
Size distribution of pressure-decomposed casein micelles studied by dynamic light scattering and AFM.
Eur Biophys J. 2006 Aug;35(6):503-9. doi: 10.1007/s00249-006-0058-6. Epub 2006 Apr 19.
9
Structure, dynamics, and optical properties of concentrated milk suspensions: an analogy to hard-sphere liquids.
J Colloid Interface Sci. 2002 Sep 1;253(1):35-46. doi: 10.1006/jcis.2002.8452.
10
Relationship between physical properties of casein micelles and rheology of skim milk concentrate.
J Dairy Sci. 2005 Nov;88(11):3784-97. doi: 10.3168/jds.S0022-0302(05)73064-2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验