Zhao Xin, Bucchi Annalisa, Oren Ronit V, Kryukova Yelena, Dun Wen, Clancy Colleen E, Robinson Richard B
Department of Pharmacology, College of Physicians and Surgeons, Columbia University, New York, NY, USA.
J Physiol. 2009 Apr 1;587(Pt 7):1513-25. doi: 10.1113/jphysiol.2008.163444. Epub 2009 Jan 26.
The pacemaker current, mediated by hyperpolarization-activated cyclic nucleotide-gated (HCN) channels, contributes to the initiation and regulation of cardiac rhythm. Previous experiments creating HCN-based biological pacemakers in vivo found that an engineered HCN2/HCN1 chimeric channel (HCN212) resulted in significantly faster rates than HCN2, interrupted by 1-5 s pauses. To elucidate the mechanisms underlying the differences in HCN212 and HCN2 in vivo functionality as biological pacemakers, we studied newborn rat ventricular myocytes over-expressing either HCN2 or HCN212 channels. The HCN2- and HCN212-over-expressing myocytes manifest similar voltage dependence, current density and sensitivity to saturating cAMP concentrations, but HCN212 has faster activation/deactivation kinetics. Compared with HCN2, myocytes expressing HCN212 exhibit a faster spontaneous rate and greater incidence of irregular rhythms (i.e. periods of rapid spontaneous rate followed by pauses). To explore these rhythm differences further, we imposed consecutive pacing and found that activation kinetics of the two channels are slower at faster pacing frequencies. As a result, time-dependent HCN current flowing during diastole decreases for both constructs during a train of stimuli at a rapid frequency, with the effect more pronounced for HCN2. In addition, the slower deactivation kinetics of HCN2 contributes to more pronounced instantaneous current at a slower frequency. As a result of the frequency dependence of both instantaneous and time-dependent current, HCN2 exhibits more robust negative feedback than HCN212, contributing to the maintenance of a stable pacing rhythm. These results illustrate the benefit of screening HCN constructs in spontaneously active myocyte cultures and may provide the basis for future optimization of HCN-based biological pacemakers.
由超极化激活的环核苷酸门控(HCN)通道介导的起搏电流,对心脏节律的起始和调节起着重要作用。先前在体内创建基于HCN的生物起搏器的实验发现,一种工程化的HCN2/HCN1嵌合通道(HCN212)产生的心率明显快于HCN2,但会被1 - 5秒的停顿打断。为了阐明HCN212和HCN2在体内作为生物起搏器功能差异的潜在机制,我们研究了过表达HCN2或HCN212通道的新生大鼠心室肌细胞。过表达HCN2和HCN212的肌细胞表现出相似的电压依赖性、电流密度以及对饱和cAMP浓度的敏感性,但HCN212具有更快的激活/失活动力学。与HCN2相比,表达HCN212的肌细胞表现出更快的自发频率和更高的不规则节律发生率(即快速自发频率期后接着停顿)。为了进一步探究这些节律差异,我们施加连续起搏,发现两个通道的激活动力学在更快的起搏频率下更慢。因此,在快速频率的一串刺激期间,两种构建体在舒张期流动的时间依赖性HCN电流均减少,对HCN2的影响更明显。此外,HCN2较慢的失活动力学在较慢频率下导致更明显的瞬时电流。由于瞬时电流和时间依赖性电流的频率依赖性,HCN2比HCN212表现出更强的负反馈,有助于维持稳定的起搏节律。这些结果说明了在自发活动的肌细胞培养物中筛选HCN构建体的益处,并可能为未来基于HCN的生物起搏器的优化提供基础。