Chen S, Wang J, Siegelbaum S A
Department of Pharmacology, ColumbiaUniversity, New York, New York 10032, USA.
J Gen Physiol. 2001 May;117(5):491-504. doi: 10.1085/jgp.117.5.491.
Members of the HCN channel family generate hyperpolarization-activated cation currents (Ih) that are directly regulated by cAMP and contribute to pacemaker activity in heart and brain. The four HCN isoforms show distinct but overlapping patterns of expression in different tissues. Here, we report that HCN1 and HCN2, isoforms coexpressed in neocortex and hippocampus that differ markedly in their biophysical properties, coassemble to generate heteromultimeric channels with novel properties. When expressed in Xenopus oocytes, HCN1 channels activate 5-10-fold more rapidly than HCN2 channels. HCN1 channels also activate at voltages that are 10-20 mV more positive than those required to activate HCN2. In cell-free patches, the steady-state activation curve of HCN1 channels shows a minimal shift in response to cAMP (+4 mV), whereas that of HCN2 channels shows a pronounced shift (+17 mV). Coexpression of HCN1 and HCN2 yields Ih currents that activate with kinetics and a voltage dependence that tend to be intermediate between those of HCN1 and HCN2 homomers, although the coexpressed channels do show a relatively large shift by cAMP (+14 mV). Neither the kinetics, steady-state voltage dependence, nor cAMP dose-response curve for the coexpressed Ih can be reproduced by the linear sum of independent populations of HCN1 and HCN2 homomers. These results are most simply explained by the formation of heteromeric channels with novel properties. The properties of these heteromeric channels closely resemble the properties of I(h) in hippocampal CA1 pyramidal neurons, cells that coexpress HCN1 and HCN2. Finally, differences in Ih channel properties recorded in cell-free patches versus intact oocytes are shown to be due, in part, to modulation of Ih by basal levels of cAMP in intact cells.
超极化激活的环核苷酸门控(HCN)通道家族成员可产生超极化激活的阳离子电流(Ih),该电流直接受环磷酸腺苷(cAMP)调控,并参与心脏和大脑的起搏活动。四种HCN亚型在不同组织中表现出不同但重叠的表达模式。在此,我们报告,在新皮层和海马体中共同表达的HCN1和HCN2亚型,其生物物理特性显著不同,它们共同组装形成具有新特性的异源多聚体通道。当在非洲爪蟾卵母细胞中表达时,HCN1通道的激活速度比HCN2通道快5至10倍。HCN1通道也在比激活HCN2所需电压正10至20 mV的电压下激活。在无细胞贴片实验中,HCN1通道的稳态激活曲线对cAMP的响应仅有微小偏移(+4 mV),而HCN2通道的稳态激活曲线则有明显偏移(+17 mV)。HCN1和HCN2共同表达产生的Ih电流,其激活动力学和电压依赖性往往介于HCN1和HCN2同型单体之间,尽管共同表达的通道对cAMP也有相对较大的偏移(+14 mV)。共同表达的Ih的动力学、稳态电压依赖性或cAMP剂量反应曲线,均不能通过HCN1和HCN2同型单体独立群体的线性总和来重现。这些结果最简单的解释是形成了具有新特性的异源多聚体通道。这些异源多聚体通道的特性与海马体CA1锥体神经元(同时表达HCN1和HCN2的细胞)中I(h)的特性非常相似。最后,无细胞贴片实验与完整卵母细胞中记录的Ih通道特性差异,部分归因于完整细胞中基础水平的cAMP对Ih的调节。
J Biol Chem. 2001-3-2
Front Cell Neurosci. 2025-5-19
Proc Natl Acad Sci U S A. 2025-2-4
Nat Commun. 2024-1-29
J Biol Chem. 2001-3-2
Brain Res Mol Brain Res. 2000-9-30
Nat Neurosci. 1999-9
Ann N Y Acad Sci. 1999-4-30