Suppr超能文献

基于岩泽分解的度量学习

Metric Learning Using Iwasawa Decomposition.

作者信息

Jian Bing, Vemuri Baba C

机构信息

Department of Computer and Information Science and Engineering, University of Florida, Gainesville, FL, 32611 USA, {bjian,vemuri}@cise.ufl.edu.

出版信息

Proc IEEE Int Conf Comput Vis. 2007 Oct;2007(Article 4408846):1-6. doi: 10.1109/ICCV.2007.4408846.

Abstract

Finding a good metric over the input space plays a fundamental role in machine learning. Most existing techniques use the Mahalanobis metric without incorporating the geometry of positive matrices and experience difficulties in the optimization procedure. In this paper we introduce the use of Iwasawa decomposition, a unique and effective parametrization of symmetric positive definite (SPD) matrices, for performing metric learning tasks. Unlike other previously employed factorizations, the use of the Iwasawa decomposition is able to reformulate the semidefinite programming (SDP) problems as smooth convex nonlinear programming (NLP) problems with much simpler constraints. We also introduce a modified Iwasawa coordinates for rank-deficient positive semidefinite (PSD) matrices which enables the unifying of the metric learning and linear dimensionality reduction. We show that the Iwasawa decomposition can be easily used in most recent proposed metric learning algorithms and have applied it to the Neighbourhood Components Analysis (NCA). The experimental results on several public domain datasets are also presented.

摘要

在输入空间中找到一个好的度量在机器学习中起着基础性作用。大多数现有技术使用马氏度量,却未纳入正定矩阵的几何结构,并且在优化过程中遇到困难。在本文中,我们引入岩泽分解的应用,它是对称正定(SPD)矩阵的一种独特且有效的参数化方法,用于执行度量学习任务。与其他先前采用的分解方法不同,岩泽分解的使用能够将半定规划(SDP)问题重新表述为具有更简单约束的光滑凸非线性规划(NLP)问题。我们还为秩亏缺的半正定(PSD)矩阵引入了一种修改后的岩泽坐标,这使得度量学习和线性降维能够统一起来。我们表明岩泽分解可以很容易地应用于最近提出的大多数度量学习算法中,并已将其应用于邻域成分分析(NCA)。还给出了在几个公共领域数据集上的实验结果。

相似文献

1
Metric Learning Using Iwasawa Decomposition.
Proc IEEE Int Conf Comput Vis. 2007 Oct;2007(Article 4408846):1-6. doi: 10.1109/ICCV.2007.4408846.
2
Efficient dual approach to distance metric learning.
IEEE Trans Neural Netw Learn Syst. 2014 Feb;25(2):394-406. doi: 10.1109/TNNLS.2013.2275170.
3
Generalized Learning Vector Quantization With Log-Euclidean Metric Learning on Symmetric Positive-Definite Manifold.
IEEE Trans Cybern. 2023 Aug;53(8):5178-5190. doi: 10.1109/TCYB.2022.3178412. Epub 2023 Jul 18.
4
Worst case linear discriminant analysis as scalable semidefinite feasibility problems.
IEEE Trans Image Process. 2015 Aug;24(8):2382-92. doi: 10.1109/TIP.2015.2401511. Epub 2015 Feb 6.
5
Scalable large-margin Mahalanobis distance metric learning.
IEEE Trans Neural Netw. 2010 Sep;21(9):1524-30. doi: 10.1109/TNN.2010.2052630. Epub 2010 Aug 12.
6
A Robust and Efficient Doubly Regularized Metric Learning Approach.
Comput Vis ECCV. 2012;7575:646-659. doi: 10.1007/978-3-642-33765-9_46.
7
Dimensionality Reduction of SPD Data Based on Riemannian Manifold Tangent Spaces and Isometry.
Entropy (Basel). 2021 Aug 27;23(9):1117. doi: 10.3390/e23091117.
8
Low-Rank Matrix Learning Using Biconvex Surrogate Minimization.
IEEE Trans Neural Netw Learn Syst. 2019 Nov;30(11):3517-3527. doi: 10.1109/TNNLS.2019.2927819. Epub 2019 Aug 9.
9
Signed Graph Metric Learning via Gershgorin Disc Perfect Alignment.
IEEE Trans Pattern Anal Mach Intell. 2022 Oct;44(10):7219-7234. doi: 10.1109/TPAMI.2021.3091682. Epub 2022 Sep 15.
10
Dimensionality Reduction on SPD Manifolds: The Emergence of Geometry-Aware Methods.
IEEE Trans Pattern Anal Mach Intell. 2018 Jan;40(1):48-62. doi: 10.1109/TPAMI.2017.2655048. Epub 2017 Jan 18.

引用本文的文献

1
A Robust and Efficient Doubly Regularized Metric Learning Approach.
Comput Vis ECCV. 2012;7575:646-659. doi: 10.1007/978-3-642-33765-9_46.
2
Regularized positive-definite fourth order tensor field estimation from DW-MRI.
Neuroimage. 2009 Mar;45(1 Suppl):S153-62. doi: 10.1016/j.neuroimage.2008.10.056. Epub 2008 Nov 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验