Jian Bing, Vemuri Baba C
Department of Computer and Information Science and Engineering, University of Florida, Gainesville, FL, 32611 USA, {bjian,vemuri}@cise.ufl.edu.
Proc IEEE Int Conf Comput Vis. 2007 Oct;2007(Article 4408846):1-6. doi: 10.1109/ICCV.2007.4408846.
Finding a good metric over the input space plays a fundamental role in machine learning. Most existing techniques use the Mahalanobis metric without incorporating the geometry of positive matrices and experience difficulties in the optimization procedure. In this paper we introduce the use of Iwasawa decomposition, a unique and effective parametrization of symmetric positive definite (SPD) matrices, for performing metric learning tasks. Unlike other previously employed factorizations, the use of the Iwasawa decomposition is able to reformulate the semidefinite programming (SDP) problems as smooth convex nonlinear programming (NLP) problems with much simpler constraints. We also introduce a modified Iwasawa coordinates for rank-deficient positive semidefinite (PSD) matrices which enables the unifying of the metric learning and linear dimensionality reduction. We show that the Iwasawa decomposition can be easily used in most recent proposed metric learning algorithms and have applied it to the Neighbourhood Components Analysis (NCA). The experimental results on several public domain datasets are also presented.
在输入空间中找到一个好的度量在机器学习中起着基础性作用。大多数现有技术使用马氏度量,却未纳入正定矩阵的几何结构,并且在优化过程中遇到困难。在本文中,我们引入岩泽分解的应用,它是对称正定(SPD)矩阵的一种独特且有效的参数化方法,用于执行度量学习任务。与其他先前采用的分解方法不同,岩泽分解的使用能够将半定规划(SDP)问题重新表述为具有更简单约束的光滑凸非线性规划(NLP)问题。我们还为秩亏缺的半正定(PSD)矩阵引入了一种修改后的岩泽坐标,这使得度量学习和线性降维能够统一起来。我们表明岩泽分解可以很容易地应用于最近提出的大多数度量学习算法中,并已将其应用于邻域成分分析(NCA)。还给出了在几个公共领域数据集上的实验结果。