Suppr超能文献

SPD 流形上的降维:几何感知方法的出现。

Dimensionality Reduction on SPD Manifolds: The Emergence of Geometry-Aware Methods.

出版信息

IEEE Trans Pattern Anal Mach Intell. 2018 Jan;40(1):48-62. doi: 10.1109/TPAMI.2017.2655048. Epub 2017 Jan 18.

Abstract

Representing images and videos with Symmetric Positive Definite (SPD) matrices, and considering the Riemannian geometry of the resulting space, has been shown to yield high discriminative power in many visual recognition tasks. Unfortunately, computation on the Riemannian manifold of SPD matrices -especially of high-dimensional ones- comes at a high cost that limits the applicability of existing techniques. In this paper, we introduce algorithms able to handle high-dimensional SPD matrices by constructing a lower-dimensional SPD manifold. To this end, we propose to model the mapping from the high-dimensional SPD manifold to the low-dimensional one with an orthonormal projection. This lets us formulate dimensionality reduction as the problem of finding a projection that yields a low-dimensional manifold either with maximum discriminative power in the supervised scenario, or with maximum variance of the data in the unsupervised one. We show that learning can be expressed as an optimization problem on a Grassmann manifold and discuss fast solutions for special cases. Our evaluation on several classification tasks evidences that our approach leads to a significant accuracy gain over state-of-the-art methods.

摘要

使用对称正定 (SPD) 矩阵表示图像和视频,并考虑到所得空间的黎曼几何结构,已被证明在许多视觉识别任务中具有很高的判别能力。不幸的是,在 SPD 矩阵的黎曼流形上进行计算 - 尤其是在高维情况下 - 成本很高,这限制了现有技术的适用性。在本文中,我们引入了能够通过构建低维 SPD 流形来处理高维 SPD 矩阵的算法。为此,我们提出用正交投影来对从高维 SPD 流形到低维 SPD 流形的映射进行建模。这使得我们可以将降维问题表述为找到一个投影,该投影在监督场景中具有最大判别能力,或者在无监督场景中具有最大的数据方差。我们表明,学习可以被表述为 Grassmann 流形上的优化问题,并讨论了特殊情况下的快速解决方案。我们在几个分类任务上的评估表明,我们的方法在准确性方面比最先进的方法有显著的提高。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验