Suppr超能文献

巨齿症、周期性条纹和上新世-更新世古人类牙釉质分泌模式。

Megadontia, striae periodicity and patterns of enamel secretion in Plio-Pleistocene fossil hominins.

机构信息

Center for Craniofacial Molecular Biology, School of Dentistry, University of Southern California, Los Angeles, USA.

出版信息

J Anat. 2008 Aug;213(2):148-58. doi: 10.1111/j.1469-7580.2008.00938.x.

Abstract

Early hominins formed large and thick-enamelled cheek-teeth within relatively short growth periods as compared with modern humans. To understand better the developmental basis of this process, we measured daily enamel increments, or cross striations, in 17 molars of Plio-Pleistocene hominins representing seven different species, including specimens attributed to early Homo. Our results show considerable variation across species, although all specimens conformed to the known pattern characterised by greater values in outer than inner enamel, and greater cuspal than cervical values. We then compared our results with the megadontia index, which represents tooth size in relation to body mass, for each species to assess the effect of daily growth rates on tooth size. Our results indicate that larger toothed (megadont) taxa display higher rates or faster forming enamel than smaller toothed hominins. By forming enamel quickly, large tooth crowns were able to develop within the constraints of shorter growth periods. Besides daily increments, many animals express long-period markings (striae of Retzius) in their enamel. We report periodicity values (number of cross striations between adjacent striae) in 14 new specimens of Australopithecus afarensis, Paranthropus aethiopicus, Paranthropus boisei, Homo habilis, Homo rudolfensis and Homo erectus, and show that long-period striae express a strong association with male and average male-female body mass. Our results for Plio-Pleistocene hominins show that the biological rhythms that give rise to long-period striae are encompassed within the range of variation known for modern humans, but show a lower mean and modal value of 7 days in australopithecines. In our sample of early Homo, mean and modal periodicity values were 8 days, and therefore similar to modern humans. These new data on daily rates of enamel formation and periodicity provide a better framework to interpret surface manifestations of internal growth markings on fossil hominin tooth crowns. Importantly, our data on early hominin cross striation variation may now contribute towards solving difficult taxonomic diagnoses where much may depend on fragmentary molar remains and enamel structure.

摘要

早期人类在相对较短的生长周期内形成了大而厚的釉质牙齿,这与现代人相比有所不同。为了更好地理解这一过程的发育基础,我们测量了来自 7 个不同物种的 17 颗臼齿的每日釉质增量,或交叉条纹,这些物种包括被认为是早期人类的标本。我们的结果显示出物种间的相当大的差异,尽管所有标本都符合已知的模式,即外釉质的数值大于内釉质,牙尖的数值大于颈缘的数值。然后,我们将我们的结果与每个物种的巨齿指数进行了比较,巨齿指数代表牙齿大小与体重的关系,以评估日生长率对牙齿大小的影响。我们的结果表明,较大齿(巨齿)类群显示出比较小齿人类更高的生长率或更快的形成釉质。通过快速形成釉质,大的牙冠能够在较短的生长周期内发育。除了每日增量外,许多动物在釉质中表达长周期标记(Retzius 条纹)。我们报告了 14 个新的南方古猿afarensis、粗壮南猿 aethiopicus、鲍氏傍人、能人、鲁道夫人和直立人的标本中的周期性值(相邻条纹之间的交叉条纹数),并表明长周期条纹与雄性和平均雄性-雌性体重之间存在很强的关联。我们对上新世-更新世人类的研究结果表明,导致长周期条纹的生物节律包含在现代人已知的变异范围内,但在南方古猿中显示出较低的均值和模态值 7 天。在我们的早期人类样本中,均值和模态周期性值为 8 天,因此与现代人相似。这些关于釉质形成和周期性的每日速率的新数据为解释化石人类牙冠内部生长标记的表面表现提供了更好的框架。重要的是,我们关于早期人类交叉条纹变异的数据现在可能有助于解决在很大程度上依赖于残缺的臼齿遗骸和釉质结构的困难分类诊断。

相似文献

1
Megadontia, striae periodicity and patterns of enamel secretion in Plio-Pleistocene fossil hominins.
J Anat. 2008 Aug;213(2):148-58. doi: 10.1111/j.1469-7580.2008.00938.x.
2
Variation in enamel development of South African fossil hominids.
J Hum Evol. 2006 Dec;51(6):580-90. doi: 10.1016/j.jhevol.2006.05.007. Epub 2006 Aug 5.
3
Appositional enamel growth in molars of South African fossil hominids.
J Anat. 2006 Jul;209(1):13-20. doi: 10.1111/j.1469-7580.2006.00597.x.
4
Disentangling isolated dental remains of Asian Pleistocene hominins and pongines.
PLoS One. 2018 Nov 1;13(11):e0204737. doi: 10.1371/journal.pone.0204737. eCollection 2018.
5
Maxillary molar enamel thickness of Plio-Pleistocene hominins.
J Hum Evol. 2020 May;142:102731. doi: 10.1016/j.jhevol.2019.102731. Epub 2020 Mar 19.
6
Enamel thickness trends in Plio-Pleistocene hominin mandibular molars.
J Hum Evol. 2015 Aug;85:35-45. doi: 10.1016/j.jhevol.2015.03.012. Epub 2015 May 27.
7
Tooth crown tissue proportions and enamel thickness in Early Pleistocene Homo antecessor molars (Atapuerca, Spain).
PLoS One. 2018 Oct 3;13(10):e0203334. doi: 10.1371/journal.pone.0203334. eCollection 2018.
8
Human-like enamel growth in Homo naledi.
Am J Biol Anthropol. 2024 May;184(1):e24893. doi: 10.1002/ajpa.24893. Epub 2024 Jan 5.
9
Patterns of lateral enamel growth in Homo naledi as assessed through perikymata distribution and number.
J Hum Evol. 2018 Aug;121:40-54. doi: 10.1016/j.jhevol.2018.03.007. Epub 2018 Apr 27.
10
Mandibular molar root and pulp cavity morphology in Homo naledi and other Plio-Pleistocene hominins.
J Hum Evol. 2019 May;130:83-95. doi: 10.1016/j.jhevol.2019.03.007. Epub 2019 Mar 21.

引用本文的文献

1
Dental biorhythm is associated with adolescent weight gain.
Commun Med (Lond). 2022 Aug 22;2:99. doi: 10.1038/s43856-022-00164-x. eCollection 2022.
2
Impact of claudin-10 deficiency on amelogenesis: Lesson from a HELIX tooth.
Ann N Y Acad Sci. 2022 Oct;1516(1):197-211. doi: 10.1111/nyas.14865. Epub 2022 Jul 28.
5
endocasts suggest ape-like brain organization and prolonged brain growth.
Sci Adv. 2020 Apr 1;6(14):eaaz4729. doi: 10.1126/sciadv.aaz4729. eCollection 2020 Apr.
6
Disentangling isolated dental remains of Asian Pleistocene hominins and pongines.
PLoS One. 2018 Nov 1;13(11):e0204737. doi: 10.1371/journal.pone.0204737. eCollection 2018.
7
The biorhythm of human skeletal growth.
J Anat. 2018 Jan;232(1):26-38. doi: 10.1111/joa.12709. Epub 2017 Oct 10.
8
Measures of maturation in early fossil hominins: events at the first transition from australopiths to early Homo.
Philos Trans R Soc Lond B Biol Sci. 2016 Jul 5;371(1698). doi: 10.1098/rstb.2015.0234.
9
The first hominin from the early Pleistocene paleocave of Haasgat, South Africa.
PeerJ. 2016 May 11;4:e2024. doi: 10.7717/peerj.2024. eCollection 2016.

本文引用的文献

1
Re-evaluation of the age at death of immature fossil hominids.
Nature. 1985;317(6037):525-7. doi: 10.1038/317525a0.
2
Nondestructive imaging of hominoid dental microstructure using phase contrast X-ray synchrotron microtomography.
J Hum Evol. 2008 Feb;54(2):272-8. doi: 10.1016/j.jhevol.2007.09.018. Epub 2007 Nov 28.
3
Incremental dental development: methods and applications in hominoid evolutionary studies.
J Hum Evol. 2008 Feb;54(2):205-24. doi: 10.1016/j.jhevol.2007.09.020. Epub 2007 Nov 28.
4
Earliest evidence of modern human life history in North African early Homo sapiens.
Proc Natl Acad Sci U S A. 2007 Apr 10;104(15):6128-33. doi: 10.1073/pnas.0700747104. Epub 2007 Mar 19.
5
How Neanderthal molar teeth grew.
Nature. 2006 Dec 7;444(7120):748-51. doi: 10.1038/nature05314. Epub 2006 Nov 22.
6
Enamel microstructure of the hominid KB 5223 from Kromdraai, South Africa.
Am J Phys Anthropol. 2007 Feb;132(2):175-82. doi: 10.1002/ajpa.20506.
7
Molar development in common chimpanzees (Pan troglodytes).
J Hum Evol. 2007 Feb;52(2):201-16. doi: 10.1016/j.jhevol.2006.09.004. Epub 2006 Sep 23.
8
Tooth microstructure tracks the pace of human life-history evolution.
Proc Biol Sci. 2006 Nov 22;273(1603):2799-808. doi: 10.1098/rspb.2006.3583.
9
Variation in enamel development of South African fossil hominids.
J Hum Evol. 2006 Dec;51(6):580-90. doi: 10.1016/j.jhevol.2006.05.007. Epub 2006 Aug 5.
10
Appositional enamel growth in molars of South African fossil hominids.
J Anat. 2006 Jul;209(1):13-20. doi: 10.1111/j.1469-7580.2006.00597.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验