Kadantsev Eugene S, Ziegler Tom
Department of Chemistry, University of Calgary, Calgary, Alberta, T2N 1N4 Canada.
J Phys Chem A. 2009 Feb 19;113(7):1327-34. doi: 10.1021/jp805466c.
The Zeeman g-tensor parameterizes the interaction of an effective electronic spin with the homogeneous external magnetic field in the electron paramagnetic resonance (EPR) experiment. In this article, we describe a Kohn-Sham DFT (KS DFT)-based implementation of the g-tensor for periodic systems. Our implementation can be used, for example, for the first-principles calculation of a g-tensor of paramagnetic defects in solids. Our approach is based on the method of Van Lenthe et al. in which the spin-orbital coupling is taken into account variationally. The method is implemented in the BAND program, a KS DFT implementation for periodic systems. The Bloch states are expanded in the basis of numerical and Slater-type atomic orbitals (NAOs/STOs). Our implementation does not rely on the frozen core approximation tacitly assumed in the pseudopotential schemes. The implementation is validated by calculating the g-tensor for small molecules as well as for paramagnetic defects in solids. In particular, we consider ozonide and hydrogen cyanide anion radicals in a KCl host crystal lattice.
在电子顺磁共振(EPR)实验中,塞曼g张量对有效电子自旋与均匀外磁场之间的相互作用进行了参数化。在本文中,我们描述了一种基于Kohn-Sham密度泛函理论(KS DFT)的周期性系统g张量实现方法。例如,我们的实现方法可用于固体中顺磁缺陷g张量的第一性原理计算。我们的方法基于Van Lenthe等人的方法,其中变分地考虑了自旋-轨道耦合。该方法在BAND程序中实现,BAND程序是一种用于周期性系统的KS DFT实现。布洛赫态在数值和斯莱特型原子轨道(NAO/STO)的基组中展开。我们的实现不依赖于赝势方案中默认的冻结核心近似。通过计算小分子以及固体中顺磁缺陷的g张量对该实现进行了验证。特别是,我们考虑了KCl主体晶格中的臭氧化物和氰化氢阴离子自由基。