Suppr超能文献

基于表面肌电和加速度计数据的固有模态样本熵的手语识别。

Sign language recognition using intrinsic-mode sample entropy on sEMG and accelerometer data.

机构信息

Department of Electrical and Computer Engineering, Aristotle University of Thessaloniki, Thessaloniki GR 54124, Greece.

出版信息

IEEE Trans Biomed Eng. 2009 Dec;56(12):2879-90. doi: 10.1109/TBME.2009.2013200. Epub 2009 Jan 23.

Abstract

Sign language forms a communication channel among the deaf; however, automated gesture recognition could further expand their communication with the hearers. In this work, data from five-channel surface electromyogram and 3-D accelerometer from the signer's dominant hand were analyzed using intrinsic-mode entropy (IMEn) for the automated recognition of Greek sign language (GSL) isolated signs. Discriminant analysis was used to identify the effective scales of the intrinsic-mode functions and the window length for the calculation of the IMEn that contributes to the efficient classification of the GSL signs. Experimental results from the IMEn analysis applied to GSL signs corresponding to 60-word lexicon repeated ten times by three native signers have shown more than 93% mean classification accuracy using IMEn as the only source of the classification feature set. This provides a promising bed-set toward the automated GSL gesture recognition.

摘要

手语为聋人之间的交流提供了一种渠道;然而,自动化的手势识别可以进一步扩大他们与听力者的交流。在这项工作中,使用内在模式熵 (IMEn) 分析来自签名者惯用手的五通道表面肌电图和 3-D 加速度计的数据,以实现希腊手语 (GSL) 孤立符号的自动识别。判别分析用于识别内在模式函数的有效尺度和用于计算 IMEn 的窗口长度,这有助于有效地对 GSL 符号进行分类。将 IMEn 分析应用于由三位母语使用者重复十次的对应于 60 个单词词汇的 GSL 符号的实验结果表明,使用 IMEn 作为分类特征集的唯一来源,平均分类准确率超过 93%。这为自动化的 GSL 手势识别提供了一个有前途的基础。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验