Suppr超能文献

基于神经网络的多智能体系统一致性问题的分布式鲁棒自适应控制

Decentralized robust adaptive control for the multiagent system consensus problem using neural networks.

作者信息

Hou Zeng-Guang, Cheng Long, Tan Min

机构信息

Key Laboratory of Complex Systems and Intelligence Science, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China.

出版信息

IEEE Trans Syst Man Cybern B Cybern. 2009 Jun;39(3):636-47. doi: 10.1109/TSMCB.2008.2007810. Epub 2009 Jan 23.

Abstract

A robust adaptive control approach is proposed to solve the consensus problem of multiagent systems. Compared with the previous work, the agent's dynamics includes the uncertainties and external disturbances, which is more practical in real-world applications. Due to the approximation capability of neural networks, the uncertain dynamics is compensated by the adaptive neural network scheme. The effects of the approximation error and external disturbances are counteracted by employing the robustness signal. The proposed algorithm is decentralized because the controller for each agent only utilizes the information of its neighbor agents. By the theoretical analysis, it is proved that the consensus error can be reduced as small as desired. The proposed method is then extended to two cases: Agents form a prescribed formation, and agents have the higher order dynamics. Finally, simulation examples are given to demonstrate the satisfactory performance of the proposed method.

摘要

提出了一种鲁棒自适应控制方法来解决多智能体系统的一致性问题。与先前的工作相比,智能体的动力学包含不确定性和外部干扰,这在实际应用中更具现实意义。由于神经网络的逼近能力,不确定动力学通过自适应神经网络方案进行补偿。逼近误差和外部干扰的影响通过采用鲁棒性信号来抵消。所提出的算法是分散式的,因为每个智能体的控制器仅利用其相邻智能体的信息。通过理论分析,证明了一致性误差可以减小到任意期望的小程度。然后将所提出的方法扩展到两种情况:智能体形成规定的编队,以及智能体具有高阶动力学。最后,给出了仿真示例以证明所提方法的良好性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验