Zhang Xin, Schaffitzel Christiane, Ban Nenad, Shan Shu-ou
Division of Chemistry and Chemical Engineering, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125, USA.
Proc Natl Acad Sci U S A. 2009 Feb 10;106(6):1754-9. doi: 10.1073/pnas.0808573106. Epub 2009 Jan 27.
The "GTPase switch" paradigm, in which a GTPase switches between an active, GTP-bound state and an inactive, GDP-bound state through the recruitment of nucleotide exchange factors (GEFs) or GTPase activating proteins (GAPs), has been used to interpret the regulatory mechanism of many GTPases. A notable exception to this paradigm is provided by two GTPases in the signal recognition particle (SRP) and the SRP receptor (SR) that control the co-translational targeting of proteins to cellular membranes. Instead of the classical "GTPase switch," both the SRP and SR undergo a series of discrete conformational rearrangements during their interaction with one another, culminating in their reciprocal GTPase activation. Here, we show that this series of rearrangements during SRP-SR binding and activation provide important control points to drive and regulate protein targeting. Using real-time fluorescence, we showed that the cargo for SRP--ribosomes translating nascent polypeptides with signal sequences--accelerates SRP.SR complex assembly over 100-fold, thereby driving rapid delivery of cargo to the membrane. A series of subsequent rearrangements in the SRP x SR GTPase complex provide important driving forces to unload the cargo during late stages of protein targeting. Further, the cargo delays GTPase activation in the SRP.SR complex by 8-12 fold, creating an important time window that could further improve the efficiency and fidelity of protein targeting. Thus, the SRP and SR GTPases, without recruiting external regulatory factors, constitute a self-sufficient system that provides exquisite spatial and temporal control of a complex cellular process.
“GTP酶开关”范式认为,GTP酶通过募集核苷酸交换因子(GEF)或GTP酶激活蛋白(GAP),在活性的GTP结合状态和非活性的GDP结合状态之间切换,该范式已被用于解释许多GTP酶的调控机制。信号识别颗粒(SRP)和SRP受体(SR)中的两种GTP酶是这一范式的一个显著例外,它们控制蛋白质向细胞膜的共翻译靶向。与经典的“GTP酶开关”不同,SRP和SR在相互作用过程中都经历了一系列离散的构象重排,最终导致它们相互的GTP酶激活。在这里,我们表明,SRP-SR结合和激活过程中的这一系列重排提供了重要的控制点,以驱动和调节蛋白质靶向。通过实时荧光,我们发现SRP的货物——翻译带有信号序列的新生多肽的核糖体——将SRP.SR复合物的组装加速了100倍以上,从而推动货物快速运输到膜上。SRP×SR GTP酶复合物中随后的一系列重排为蛋白质靶向后期卸载货物提供了重要驱动力。此外,货物将SRP.SR复合物中的GTP酶激活延迟了8-12倍,创造了一个重要的时间窗口,这可以进一步提高蛋白质靶向的效率和保真度。因此,SRP和SR GTP酶在不募集外部调节因子的情况下,构成了一个自给自足的系统,为复杂的细胞过程提供了精确的空间和时间控制。