Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
J Cell Biol. 2010 Aug 23;190(4):623-35. doi: 10.1083/jcb.201004129.
The signal recognition particle (SRP) and SRP receptor comprise the major cellular machinery that mediates the cotranslational targeting of proteins to cellular membranes. It remains unclear how the delivery of cargos to the target membrane is spatially coordinated. We show here that phospholipid binding drives important conformational rearrangements that activate the bacterial SRP receptor FtsY and the SRP-FtsY complex. This leads to accelerated SRP-FtsY complex assembly, and allows the SRP-FtsY complex to more efficiently unload cargo proteins. Likewise, formation of an active SRP-FtsY GTPase complex exposes FtsY's lipid-binding helix and enables stable membrane association of the targeting complex. Thus, membrane binding, complex assembly with SRP, and cargo unloading are inextricably linked to each other via conformational changes in FtsY. These allosteric communications allow the membrane delivery of cargo proteins to be efficiently coupled to their subsequent unloading and translocation, thus providing spatial coordination during protein targeting.
信号识别颗粒(SRP)和 SRP 受体构成了介导蛋白质共翻译靶向到细胞膜的主要细胞机制。目前尚不清楚如何在空间上协调货物的递送到靶膜。我们在这里表明,磷脂结合驱动重要的构象重排,从而激活细菌 SRP 受体 FtsY 和 SRP-FtsY 复合物。这导致 SRP-FtsY 复合物的组装加速,并允许 SRP-FtsY 复合物更有效地卸载货物蛋白。同样,形成活性 SRP-FtsY GTPase 复合物会暴露出 FtsY 的脂质结合螺旋,并使靶向复合物能够稳定地与膜结合。因此,通过 FtsY 的构象变化,膜结合、与 SRP 的复合物组装以及货物卸载彼此不可分割地联系在一起。这些变构通讯允许货物蛋白的膜递送到其随后的卸载和易位有效地偶联,从而在蛋白质靶向过程中提供空间协调。