Suppr超能文献

双源CT扫描仪的图像重建与图像质量评估

Image reconstruction and image quality evaluation for a dual source CT scanner.

作者信息

Flohr T G, Bruder H, Stierstorfer K, Petersilka M, Schmidt B, McCollough C H

机构信息

Computed Tomography, Siemens Healthcare, 91301 Forchheim, Germany.

出版信息

Med Phys. 2008 Dec;35(12):5882-97. doi: 10.1118/1.3020756.

Abstract

The authors present and evaluate concepts for image reconstruction in dual source CT (DSCT). They describe both standard spiral (helical) DSCT image reconstruction and electrocardiogram (ECG)-synchronized image reconstruction. For a compact mechanical design of the DSCT, one detector (A) can cover the full scan field of view, while the other detector (B) has to be restricted to a smaller, central field of view. The authors develop an algorithm for scan data completion, extrapolating truncated data of detector (B) by using data of detector (A). They propose a unified framework for convolution and simultaneous 3D backprojection of both (A) and (B) data, with similar treatment of standard spiral, ECG-gated spiral, and sequential (axial) scan data. In ECG-synchronized image reconstruction, a flexible scan data range per measurement system can be used to trade off temporal resolution for reduced image noise. Both data extrapolation and image reconstruction are evaluated by means of computer simulated data of anthropomorphic phantoms, by phantom measurements and patient studies. The authors show that a consistent filter direction along the spiral tangent on both detectors is essential to reduce cone-beam artifacts, requiring truncation of the extrapolated (B) data after convolution in standard spiral scans. Reconstructions of an anthropomorphic thorax phantom demonstrate good image quality and dose accumulation as theoretically expected for simultaneous 3D backprojection of the filtered (A) data and the truncated filtered (B) data into the same 3D image volume. In ECG-gated spiral modes, spiral slice sensitivity profiles (SSPs) show only minor dependence on the patient's heart rate if the spiral pitch is properly adapted. Measurements with a thin gold plate phantom result in effective slice widths (full width at half maximum of the SSP) of 0.63-0.69 mm for the nominal 0.6 mm slice and 0.82-0.87 mm for the nominal 0.75 mm slice. The visually determined through-plane (z axis) spatial resolution in a bar pattern phantom is 0.33-0.36 mm for the nominal 0.6 mm slice and 0.45 mm for the nominal 0.75 mm slice, again almost independent of the patient's heart rate. The authors verify the theoretically expected temporal resolution of 83 ms at 330 ms gantry rotation time by blur free images of a moving coronary artery phantom with 90 ms rest phase and demonstrate image noise reduction as predicted for increased reconstruction data ranges per measurement system. Finally, they show that the smoothness of the transition between image stacks acquired in different cardiac cycles can be efficiently controlled with the proposed approach for ECG-synchronized image reconstruction.

摘要

作者介绍并评估了双源CT(DSCT)中的图像重建概念。他们描述了标准螺旋(螺旋)DSCT图像重建和心电图(ECG)同步图像重建。为实现DSCT的紧凑机械设计,一个探测器(A)可覆盖整个扫描视野,而另一个探测器(B)则必须限制在较小的中央视野范围内。作者开发了一种扫描数据补全算法,通过使用探测器(A)的数据来外推探测器(B)的截断数据。他们提出了一个统一的框架,用于对(A)和(B)数据进行卷积和同步三维反投影,对标准螺旋、ECG门控螺旋和序列(轴向)扫描数据进行类似处理。在ECG同步图像重建中,每个测量系统可使用灵活的扫描数据范围来权衡时间分辨率与降低图像噪声。数据外推和图像重建均通过人体模型的计算机模拟数据、模型测量和患者研究进行评估。作者表明,沿两个探测器上螺旋切线的一致滤波方向对于减少锥形束伪影至关重要,这要求在标准螺旋扫描中卷积后截断外推的(B)数据。人体胸部模型的重建显示出良好的图像质量和剂量累积,正如理论上预期的那样,将滤波后的(A)数据和截断的滤波后(B)数据同时三维反投影到同一三维图像体积中。在ECG门控螺旋模式下,如果螺旋螺距适当调整,螺旋切片灵敏度曲线(SSP)对患者心率的依赖性很小。使用薄金板模型进行测量时,对于标称0.6mm切片,有效切片宽度(SSP半高宽)为0.63 - 0.69mm,对于标称0.75mm切片,有效切片宽度为0.82 - 0.87mm。在条形图案模型中,目视确定的层面内(z轴)空间分辨率对于标称0.6mm切片为0.33 - 0.36mm,对于标称0.75mm切片为0.45mm,同样几乎与患者心率无关。作者通过具有90ms静止期的移动冠状动脉模型的无模糊图像验证了在330ms机架旋转时间下理论预期的83ms时间分辨率,并证明了如预测的那样,每个测量系统增加重建数据范围可降低图像噪声。最后,他们表明,对于所提出的ECG同步图像重建方法,可有效控制在不同心动周期采集的图像堆栈之间过渡的平滑度。

相似文献

1
Image reconstruction and image quality evaluation for a dual source CT scanner.
Med Phys. 2008 Dec;35(12):5882-97. doi: 10.1118/1.3020756.
8
Image reconstruction and image quality evaluation for a 16-slice CT scanner.
Med Phys. 2003 May;30(5):832-45. doi: 10.1118/1.1562168.
9
Performance evaluation of a 64-slice CT system with z-flying focal spot.
Rofo. 2004 Dec;176(12):1803-10. doi: 10.1055/s-2004-813717.
10
Advanced single-slice rebinning in cone-beam spiral CT.
Med Phys. 2000 Apr;27(4):754-72. doi: 10.1118/1.598938.

引用本文的文献

1
Pseudo dual-energy CT-derived iodine mapping using single-energy CT data based on a convolution neural network.
BJR Open. 2023 Oct 18;5(1):20220059. doi: 10.1259/bjro.20220059. eCollection 2023.
2
Crystal Analyzer Based Multispectral Microtomography Using CCD-Sensor.
Sensors (Basel). 2023 Jul 14;23(14):6389. doi: 10.3390/s23146389.
4
MCR toolkit: A GPU-based toolkit for multi-channel reconstruction of preclinical and clinical x-ray CT data.
Med Phys. 2023 Aug;50(8):4775-4796. doi: 10.1002/mp.16532. Epub 2023 Jun 7.
5
CArdiac and REspiratory adaptive Computed Tomography (CARE-CT): a proof-of-concept digital phantom study.
Phys Eng Sci Med. 2022 Dec;45(4):1257-1271. doi: 10.1007/s13246-022-01193-5. Epub 2022 Nov 25.
7
Energy-integrating-detector multi-energy CT: Implementation and a phantom study.
Med Phys. 2021 Sep;48(9):4857-4871. doi: 10.1002/mp.14943. Epub 2021 Jul 29.
8
Technical development in cardiac CT: current standards and future improvements-a narrative review.
Cardiovasc Diagn Ther. 2020 Dec;10(6):2018-2035. doi: 10.21037/cdt-20-527.
9
Spectral Computed Tomography: Fundamental Principles and Recent Developments.
Korean J Radiol. 2021 Jan;22(1):86-96. doi: 10.3348/kjr.2020.0144. Epub 2020 Sep 10.
10
Deep learning based spectral extrapolation for dual-source, dual-energy x-ray computed tomography.
Med Phys. 2020 Sep;47(9):4150-4163. doi: 10.1002/mp.14324. Epub 2020 Jul 6.

本文引用的文献

1
Dual-energy computed tomography for the differentiation of uric acid stones: ex vivo performance evaluation.
Urol Res. 2008 Aug;36(3-4):133-8. doi: 10.1007/s00240-008-0140-x. Epub 2008 Jun 11.
2
Dual-energy CT of the heart for diagnosing coronary artery stenosis and myocardial ischemia-initial experience.
Eur Radiol. 2008 Nov;18(11):2414-24. doi: 10.1007/s00330-008-1022-x. Epub 2008 Jun 4.
3
Measurement of temporal resolution in dual source CT.
Med Phys. 2008 Feb;35(2):764-8. doi: 10.1118/1.2826559.
4
Dual energy CT characterization of urinary calculi: initial in vitro and clinical experience.
Invest Radiol. 2008 Feb;43(2):112-9. doi: 10.1097/RLI.0b013e318157a144.
5
Influence of heart rate on the diagnostic accuracy of dual-source computed tomography coronary angiography.
J Am Coll Cardiol. 2007 Dec 18;50(25):2393-8. doi: 10.1016/j.jacc.2007.09.017.
6
Noninvasive differentiation of uric acid versus non-uric acid kidney stones using dual-energy CT.
Acad Radiol. 2007 Dec;14(12):1441-7. doi: 10.1016/j.acra.2007.09.016.
7
Diagnostic accuracy of dual-source computed tomography in the diagnosis of coronary artery disease.
Invest Radiol. 2007 Oct;42(10):684-91. doi: 10.1097/RLI.0b013e31806907d0.
8
Dual-source CT coronary angiography: image quality, mean heart rate, and heart rate variability.
AJR Am J Roentgenol. 2007 Sep;189(3):567-73. doi: 10.2214/AJR.07.2078.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验