Kuriki T, Takata H, Okada S, Imanaka T
Biochemical Research Laboratories, Ezaki Glico Co., Ltd., Osaka, Japan.
J Bacteriol. 1991 Oct;173(19):6147-52. doi: 10.1128/jb.173.19.6147-6152.1991.
The active center of the neopullulanase from Bacillus stearothermophilus was analyzed by means of site-directed mutagenesis. The amino acid residues located in the active center of the neopullulanase were tentatively identified according to a molecular model of Taka-amylase A and homology analysis of the amino acid sequences of neopullulanse, Taka-amylase A, and other amylolytic enzymes. When amino acid residues Glu and Asp, corresponding to the putative catalytic sites, were replaced by the oppositely charged (His) or noncharged (Gln or Asn) amino acid residue, neopullulanase activities toward alpha-(1----4)- and alpha-(1----6)-glucosidic linkages disappeared. When the amino acids corresponding to the putative substrate-binding sites were replaced, the specificities of the mutated neopullulanases toward alpha-(1----4)- and alpha-(1----6)-glucosidic linkages were obviously different from that of the wild-type enzyme. This finding proves that one active center of neopullulanase participated in the dual activity toward alpha-(1----4)- and alpha-(1----6)-glucosidic linkages. Pullulan is a linear glucan of maltotriosyl units linked through alpha-(1----6)-glucosidic linkages. The production ratio of panose from pullulan was significantly increased by using the mutated neopullulanase which exhibited higher specificity toward the alpha-(1----4)-glucosidic linkage. In contrast, the production ratio of panose was obviously decreased by using the mutated neopullulanse which exhibited higher specificity toward the alpha-(1----6)-glucosidic linkage.
通过定点诱变分析了嗜热脂肪芽孢杆菌新普鲁兰酶的活性中心。根据Taka淀粉酶A的分子模型以及新普鲁兰酶、Taka淀粉酶A和其他淀粉分解酶的氨基酸序列同源性分析,初步确定了新普鲁兰酶活性中心的氨基酸残基。当对应于假定催化位点的氨基酸残基Glu和Asp被带相反电荷的(His)或不带电荷的(Gln或Asn)氨基酸残基取代时,新普鲁兰酶对α-(1→4)-和α-(1→6)-糖苷键的活性消失。当对应于假定底物结合位点的氨基酸被取代时,突变的新普鲁兰酶对α-(1→4)-和α-(1→6)-糖苷键的特异性明显不同于野生型酶。这一发现证明新普鲁兰酶的一个活性中心参与了对α-(1→4)-和α-(1→6)-糖苷键的双重活性。普鲁兰是一种由麦芽三糖单元通过α-(1→6)-糖苷键连接而成的线性葡聚糖。使用对α-(1→4)-糖苷键具有更高特异性的突变新普鲁兰酶时,普鲁兰产生潘糖的比例显著增加。相反,使用对α-(1→6)-糖苷键具有更高特异性的突变新普鲁兰酶时,潘糖的产生比例明显降低。