Suppr超能文献

豆科根瘤菌3841中γ-氨基丁酸的代谢途径及其在共生中的作用。

Pathway of gamma-aminobutyrate metabolism in Rhizobium leguminosarum 3841 and its role in symbiosis.

作者信息

Prell Jurgen, Bourdès Alexandre, Karunakaran Ramakrishnan, Lopez-Gomez Miguel, Poole Philip

机构信息

Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Colney, United Kingdom.

出版信息

J Bacteriol. 2009 Apr;191(7):2177-86. doi: 10.1128/JB.01714-08. Epub 2009 Jan 30.

Abstract

Pea plants incubated in 15N2 rapidly accumulated labeled gamma-aminobutyrate (GABA) in the plant cytosol and in bacteroids of Rhizobium leguminosarum bv. viciae 3841. Two pathways of GABA metabolism were identified in R. leguminosarum 3841. In the first, glutamate is formed by GABA aminotransferase (GabT), transferring the amino group from GABA to 2-oxoglutarate. In the second, alanine is formed by two omega-aminotransferases (OpaA and OpaB), transferring the amino group from GABA to pyruvate. While the gabT mutant and the gabT opaA double mutant grew on GABA as a nitrogen source, the final triple mutant did not. The semialdehyde released from GABA by transamination is oxidized by succinate semialdehyde dehydrogenase (GabD). Five of six potential GabD proteins in R. leguminosarum bv. viciae 3841 (GabD1, -D2, -D3, -D4, and -D5) were shown by expression analysis to have this activity. However, only mutations of GabD1, GabD2, and GabD4 were required to prevent utilization of GABA as the sole nitrogen source in culture. The specific enzyme activities of GabT, Opa, and GabD were highly elevated in bacteroids relative to cultured bacteria. This was due to elevated expression of gabT, opaA, gabD1, and gabD2 in nodules. Strains mutated in aminotransferase and succinate semialdehyde dehydrogenases (gabT, opaA, or opaB and gabD1, gabD2, or gabD4, respectively) that cannot use GABA in culture still fixed nitrogen on plants. While GABA catabolism alone is not essential for N2 fixation in bacteroids, it may have a role in energy generation and in bypassing the decarboxylating arm of the tricarboxylic acid cycle.

摘要

在15N2中培养的豌豆植株,其植物细胞质和豌豆根瘤菌蚕豆生物型3841的类菌体中迅速积累了标记的γ-氨基丁酸(GABA)。在豌豆根瘤菌3841中鉴定出了两条GABA代谢途径。第一条途径中,GABA转氨酶(GabT)将GABA的氨基转移到2-氧代戊二酸上,形成谷氨酸。第二条途径中,两种ω-转氨酶(OpaA和OpaB)将GABA的氨基转移到丙酮酸上,形成丙氨酸。虽然gabT突变体和gabT opaA双突变体能够以GABA作为氮源生长,但最终的三突变体却不能。通过转氨作用从GABA释放的半醛被琥珀酸半醛脱氢酶(GabD)氧化。豌豆根瘤菌蚕豆生物型3841中六个潜在的GabD蛋白中的五个(GabD1、-D2、-D3、-D4和-D5)经表达分析显示具有这种活性。然而,仅GabD1、GabD2和GabD4的突变就足以阻止在培养中利用GABA作为唯一氮源。相对于培养的细菌,类菌体中GabT、Opa和GabD的比酶活性显著升高。这是由于根瘤中gabT、opaA、gabD1和gabD2的表达升高所致。在转氨酶和琥珀酸半醛脱氢酶中发生突变的菌株(分别为gabT、opaA或opaB以及gabD1、gabD2或gabD4),虽然在培养中不能利用GABA,但仍能在植物上固定氮。虽然仅GABA分解代谢对于类菌体中的固氮作用并非必不可少,但它可能在能量产生以及绕过三羧酸循环的脱羧支路方面发挥作用。

相似文献

1
Pathway of gamma-aminobutyrate metabolism in Rhizobium leguminosarum 3841 and its role in symbiosis.
J Bacteriol. 2009 Apr;191(7):2177-86. doi: 10.1128/JB.01714-08. Epub 2009 Jan 30.
4
Characterization of a {gamma}-aminobutyric acid transport system of Rhizobium leguminosarum bv. viciae 3841.
J Bacteriol. 2009 Mar;191(5):1547-55. doi: 10.1128/JB.00926-08. Epub 2008 Dec 19.
6
Role of O2 in the Growth of Rhizobium leguminosarum bv. viciae 3841 on Glucose and Succinate.
J Bacteriol. 2016 Dec 13;199(1). doi: 10.1128/JB.00572-16. Print 2017 Jan 1.
8
Legumes regulate Rhizobium bacteroid development and persistence by the supply of branched-chain amino acids.
Proc Natl Acad Sci U S A. 2009 Jul 28;106(30):12477-82. doi: 10.1073/pnas.0903653106. Epub 2009 Jul 13.
10
Proteome Analysis Reveals a Significant Host-Specific Response in Rhizobium leguminosarum bv. viciae Endosymbiotic Cells.
Mol Cell Proteomics. 2021;20:100009. doi: 10.1074/mcp.RA120.002276. Epub 2020 Dec 6.

引用本文的文献

1
Identification and functional analysis of recent IS transposition events in rhizobia.
Mob DNA. 2024 Sep 5;15(1):17. doi: 10.1186/s13100-024-00327-8.
2
Enhanced accumulation of γ-aminobutyric acid by deletion of aminotransferase genes involved in γ-aminobutyric acid catabolism in engineered .
Appl Environ Microbiol. 2024 Sep 18;90(9):e0073424. doi: 10.1128/aem.00734-24. Epub 2024 Aug 12.
5
Deciphering Genomes: Genetic Signatures of Plant-Associated .
Front Plant Sci. 2022 Mar 25;13:872356. doi: 10.3389/fpls.2022.872356. eCollection 2022.
6
The Proteogenome of Symbiotic in Nodules.
Microorganisms. 2022 Mar 18;10(3):651. doi: 10.3390/microorganisms10030651.
7
Terrestrial-type nitrogen-fixing symbiosis between seagrass and a marine bacterium.
Nature. 2021 Dec;600(7887):105-109. doi: 10.1038/s41586-021-04063-4. Epub 2021 Nov 3.
8
Metabolic control of nitrogen fixation in rhizobium-legume symbioses.
Sci Adv. 2021 Jul 30;7(31). doi: 10.1126/sciadv.abh2433. Print 2021 Jul.
9
Glutathione Peroxidase Is Essential for Oxidative Stress Resistance and Efficient Nodulation.
Front Microbiol. 2021 Feb 9;12:627562. doi: 10.3389/fmicb.2021.627562. eCollection 2021.
10
How Rhizobia Adapt to the Nodule Environment.
J Bacteriol. 2021 May 20;203(12):e0053920. doi: 10.1128/JB.00539-20. Epub 2021 Feb 1.

本文引用的文献

1
Characterization of a {gamma}-aminobutyric acid transport system of Rhizobium leguminosarum bv. viciae 3841.
J Bacteriol. 2009 Mar;191(5):1547-55. doi: 10.1128/JB.00926-08. Epub 2008 Dec 19.
2
Characterization of the quaternary amine transporters of Rhizobium leguminosarum bv. viciae 3841.
FEMS Microbiol Lett. 2008 Oct;287(2):212-20. doi: 10.1111/j.1574-6968.2008.01307.x. Epub 2008 Aug 21.
5
Isocitrate dehydrogenase of Bradyrhizobium japonicum is not required for symbiotic nitrogen fixation with soybean.
J Bacteriol. 2006 Nov;188(21):7600-8. doi: 10.1128/JB.00671-06. Epub 2006 Aug 25.
6
Osmotic upshift transiently inhibits uptake via ABC transporters in gram-negative bacteria.
J Bacteriol. 2006 Jul;188(14):5304-7. doi: 10.1128/JB.00262-06.
7
Mathematical modeling of oxygen diffusion and respiration in legume root nodules.
Plant Physiol. 1992 Mar;98(3):901-7. doi: 10.1104/pp.98.3.901.
9
Products of Dark CO(2) Fixation in Pea Root Nodules Support Bacteroid Metabolism.
Plant Physiol. 1990 May;93(1):12-9. doi: 10.1104/pp.93.1.12.
10
The genome of Rhizobium leguminosarum has recognizable core and accessory components.
Genome Biol. 2006;7(4):R34. doi: 10.1186/gb-2006-7-4-r34. Epub 2006 Apr 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验