Prell Jurgen, Bourdès Alexandre, Karunakaran Ramakrishnan, Lopez-Gomez Miguel, Poole Philip
Department of Molecular Microbiology, John Innes Centre, Norwich Research Park, Colney, United Kingdom.
J Bacteriol. 2009 Apr;191(7):2177-86. doi: 10.1128/JB.01714-08. Epub 2009 Jan 30.
Pea plants incubated in 15N2 rapidly accumulated labeled gamma-aminobutyrate (GABA) in the plant cytosol and in bacteroids of Rhizobium leguminosarum bv. viciae 3841. Two pathways of GABA metabolism were identified in R. leguminosarum 3841. In the first, glutamate is formed by GABA aminotransferase (GabT), transferring the amino group from GABA to 2-oxoglutarate. In the second, alanine is formed by two omega-aminotransferases (OpaA and OpaB), transferring the amino group from GABA to pyruvate. While the gabT mutant and the gabT opaA double mutant grew on GABA as a nitrogen source, the final triple mutant did not. The semialdehyde released from GABA by transamination is oxidized by succinate semialdehyde dehydrogenase (GabD). Five of six potential GabD proteins in R. leguminosarum bv. viciae 3841 (GabD1, -D2, -D3, -D4, and -D5) were shown by expression analysis to have this activity. However, only mutations of GabD1, GabD2, and GabD4 were required to prevent utilization of GABA as the sole nitrogen source in culture. The specific enzyme activities of GabT, Opa, and GabD were highly elevated in bacteroids relative to cultured bacteria. This was due to elevated expression of gabT, opaA, gabD1, and gabD2 in nodules. Strains mutated in aminotransferase and succinate semialdehyde dehydrogenases (gabT, opaA, or opaB and gabD1, gabD2, or gabD4, respectively) that cannot use GABA in culture still fixed nitrogen on plants. While GABA catabolism alone is not essential for N2 fixation in bacteroids, it may have a role in energy generation and in bypassing the decarboxylating arm of the tricarboxylic acid cycle.
在15N2中培养的豌豆植株,其植物细胞质和豌豆根瘤菌蚕豆生物型3841的类菌体中迅速积累了标记的γ-氨基丁酸(GABA)。在豌豆根瘤菌3841中鉴定出了两条GABA代谢途径。第一条途径中,GABA转氨酶(GabT)将GABA的氨基转移到2-氧代戊二酸上,形成谷氨酸。第二条途径中,两种ω-转氨酶(OpaA和OpaB)将GABA的氨基转移到丙酮酸上,形成丙氨酸。虽然gabT突变体和gabT opaA双突变体能够以GABA作为氮源生长,但最终的三突变体却不能。通过转氨作用从GABA释放的半醛被琥珀酸半醛脱氢酶(GabD)氧化。豌豆根瘤菌蚕豆生物型3841中六个潜在的GabD蛋白中的五个(GabD1、-D2、-D3、-D4和-D5)经表达分析显示具有这种活性。然而,仅GabD1、GabD2和GabD4的突变就足以阻止在培养中利用GABA作为唯一氮源。相对于培养的细菌,类菌体中GabT、Opa和GabD的比酶活性显著升高。这是由于根瘤中gabT、opaA、gabD1和gabD2的表达升高所致。在转氨酶和琥珀酸半醛脱氢酶中发生突变的菌株(分别为gabT、opaA或opaB以及gabD1、gabD2或gabD4),虽然在培养中不能利用GABA,但仍能在植物上固定氮。虽然仅GABA分解代谢对于类菌体中的固氮作用并非必不可少,但它可能在能量产生以及绕过三羧酸循环的脱羧支路方面发挥作用。