Suppr超能文献

与宿主植物豌豆和广布野豌豆共生的豌豆根瘤菌蚕豆生物变种的转录组分析。

Transcriptomic analysis of Rhizobium leguminosarum biovar viciae in symbiosis with host plants Pisum sativum and Vicia cracca.

作者信息

Karunakaran R, Ramachandran V K, Seaman J C, East A K, Mouhsine B, Mauchline T H, Prell J, Skeffington A, Poole P S

机构信息

Department of Molecular Microbiology, John Innes Centre, Norwich, United Kingdom.

出版信息

J Bacteriol. 2009 Jun;191(12):4002-14. doi: 10.1128/JB.00165-09. Epub 2009 Apr 17.

Abstract

Rhizobium leguminosarum bv. viciae forms nitrogen-fixing nodules on several legumes, including pea (Pisum sativum) and vetch (Vicia cracca), and has been widely used as a model to study nodule biochemistry. To understand the complex biochemical and developmental changes undergone by R. leguminosarum bv. viciae during bacteroid development, microarray experiments were first performed with cultured bacteria grown on a variety of carbon substrates (glucose, pyruvate, succinate, inositol, acetate, and acetoacetate) and then compared to bacteroids. Bacteroid metabolism is essentially that of dicarboxylate-grown cells (i.e., induction of dicarboxylate transport, gluconeogenesis and alanine synthesis, and repression of sugar utilization). The decarboxylating arm of the tricarboxylic acid cycle is highly induced, as is gamma-aminobutyrate metabolism, particularly in bacteroids from early (7-day) nodules. To investigate bacteroid development, gene expression in bacteroids was analyzed at 7, 15, and 21 days postinoculation of peas. This revealed that bacterial rRNA isolated from pea, but not vetch, is extensively processed in mature bacteroids. In early development (7 days), there were large changes in the expression of regulators, exported and cell surface molecules, multidrug exporters, and heat and cold shock proteins. fix genes were induced early but continued to increase in mature bacteroids, while nif genes were induced strongly in older bacteroids. Mutation of 37 genes that were strongly upregulated in mature bacteroids revealed that none were essential for nitrogen fixation. However, screening of 3,072 mini-Tn5 mutants on peas revealed previously uncharacterized genes essential for nitrogen fixation. These encoded a potential magnesium transporter, an AAA domain protein, and proteins involved in cytochrome synthesis.

摘要

豌豆根瘤菌蚕豆生物型能在包括豌豆(Pisum sativum)和巢菜(Vicia cracca)在内的多种豆科植物上形成固氮根瘤,并且已被广泛用作研究根瘤生物化学的模型。为了了解豌豆根瘤菌蚕豆生物型在类菌体发育过程中所经历的复杂生化和发育变化,首先对在多种碳源底物(葡萄糖、丙酮酸、琥珀酸、肌醇、乙酸盐和乙酰乙酸盐)上生长的培养细菌进行了微阵列实验,然后与类菌体进行比较。类菌体代谢本质上是二羧酸生长细胞的代谢(即二羧酸转运、糖异生和丙氨酸合成的诱导,以及糖利用的抑制)。三羧酸循环的脱羧臂高度诱导,γ-氨基丁酸代谢也是如此,特别是在早期(7天)根瘤的类菌体中。为了研究类菌体发育,在豌豆接种后7、15和21天分析了类菌体中的基因表达。这表明从豌豆而非巢菜中分离的细菌rRNA在成熟类菌体中被广泛加工。在早期发育(7天)时,调节因子、输出和细胞表面分子、多药输出蛋白以及热和冷休克蛋白的表达发生了很大变化。fix基因在早期被诱导,但在成熟类菌体中持续增加,而nif基因在较老的类菌体中被强烈诱导。对在成熟类菌体中强烈上调的37个基因进行突变分析表明,没有一个基因对固氮是必需的。然而,在豌豆上对3072个mini-Tn5突变体进行筛选,发现了以前未鉴定的对固氮必需的基因。这些基因编码一种潜在的镁转运蛋白、一种AAA结构域蛋白以及参与细胞色素合成的蛋白。

相似文献

2
Transcriptomic analysis of Rhizobium leguminosarum bacteroids in determinate and indeterminate nodules.
Microb Genom. 2019 Feb;5(2). doi: 10.1099/mgen.0.000254. Epub 2019 Feb 19.
4
A microaerobically induced small heat shock protein contributes to / symbiosis and interacts with a wide range of bacteroid proteins.
Appl Environ Microbiol. 2025 Jan 31;91(1):e0138524. doi: 10.1128/aem.01385-24. Epub 2024 Dec 23.
5
Legumes regulate Rhizobium bacteroid development and persistence by the supply of branched-chain amino acids.
Proc Natl Acad Sci U S A. 2009 Jul 28;106(30):12477-82. doi: 10.1073/pnas.0903653106. Epub 2009 Jul 13.
6
Proteome Analysis Reveals a Significant Host-Specific Response in Rhizobium leguminosarum bv. viciae Endosymbiotic Cells.
Mol Cell Proteomics. 2021;20:100009. doi: 10.1074/mcp.RA120.002276. Epub 2020 Dec 6.
7
BacA is essential for bacteroid development in nodules of galegoid, but not phaseoloid, legumes.
J Bacteriol. 2010 Jun;192(11):2920-8. doi: 10.1128/JB.00020-10. Epub 2010 Apr 2.
9
Role of O2 in the Growth of Rhizobium leguminosarum bv. viciae 3841 on Glucose and Succinate.
J Bacteriol. 2016 Dec 13;199(1). doi: 10.1128/JB.00572-16. Print 2017 Jan 1.
10
Mutation in the pssM gene encoding ketal pyruvate transferase leads to disruption of Rhizobium leguminosarum bv. viciae-Pisum sativum symbiosis.
J Appl Microbiol. 2010 Aug;109(2):731-742. doi: 10.1111/j.1365-2672.2010.04702.x. Epub 2010 Feb 11.

引用本文的文献

1
Screening and Validation of Rhizobial Strains for Improved Lentil Growth.
Microorganisms. 2025 May 28;13(6):1242. doi: 10.3390/microorganisms13061242.
4
A microaerobically induced small heat shock protein contributes to / symbiosis and interacts with a wide range of bacteroid proteins.
Appl Environ Microbiol. 2025 Jan 31;91(1):e0138524. doi: 10.1128/aem.01385-24. Epub 2024 Dec 23.
5
Protein import into bacterial endosymbionts and evolving organelles.
FEBS J. 2025 Jun;292(12):2992-3013. doi: 10.1111/febs.17356. Epub 2024 Dec 10.
6
Factors governing attachment of to legume roots at acid, neutral, and alkaline pHs.
mSystems. 2024 Sep 17;9(9):e0042224. doi: 10.1128/msystems.00422-24. Epub 2024 Aug 21.
7
Intercropping on Mars: A promising system to optimise fresh food production in future martian colonies.
PLoS One. 2024 May 1;19(5):e0302149. doi: 10.1371/journal.pone.0302149. eCollection 2024.
8
The motility and chemosensory systems of Rhizobium leguminosarum, their role in symbiosis, and link to PTS regulation.
Environ Microbiol. 2024 Feb;26(2):e16570. doi: 10.1111/1462-2920.16570. Epub 2024 Jan 12.
10
A Look at Plant-Growth-Promoting Bacteria.
Plants (Basel). 2023 Apr 17;12(8):1668. doi: 10.3390/plants12081668.

本文引用的文献

1
Pathway of gamma-aminobutyrate metabolism in Rhizobium leguminosarum 3841 and its role in symbiosis.
J Bacteriol. 2009 Apr;191(7):2177-86. doi: 10.1128/JB.01714-08. Epub 2009 Jan 30.
2
Characterization of the quaternary amine transporters of Rhizobium leguminosarum bv. viciae 3841.
FEMS Microbiol Lett. 2008 Oct;287(2):212-20. doi: 10.1111/j.1574-6968.2008.01307.x. Epub 2008 Aug 21.
3
Coordinating nodule morphogenesis with rhizobial infection in legumes.
Annu Rev Plant Biol. 2008;59:519-46. doi: 10.1146/annurev.arplant.59.032607.092839.
4
Transcription profiling of soybean nodulation by Bradyrhizobium japonicum.
Mol Plant Microbe Interact. 2008 May;21(5):631-45. doi: 10.1094/MPMI-21-5-0631.
5
myo-Inositol catabolism in Bacillus subtilis.
J Biol Chem. 2008 Apr 18;283(16):10415-24. doi: 10.1074/jbc.M708043200. Epub 2008 Feb 28.
6
Genome-wide transcript analysis of Bradyrhizobium japonicum bacteroids in soybean root nodules.
Mol Plant Microbe Interact. 2007 Nov;20(11):1353-63. doi: 10.1094/MPMI-20-11-1353.
7
8
Transcriptome profiling reveals the importance of plasmid pSymB for osmoadaptation of Sinorhizobium meliloti.
J Bacteriol. 2006 Nov;188(21):7617-25. doi: 10.1128/JB.00719-06. Epub 2006 Aug 17.
9
The genome of Rhizobium leguminosarum has recognizable core and accessory components.
Genome Biol. 2006;7(4):R34. doi: 10.1186/gb-2006-7-4-r34. Epub 2006 Apr 26.
10
Sinorhizobium meliloti differentiation during symbiosis with alfalfa: a transcriptomic dissection.
Mol Plant Microbe Interact. 2006 Apr;19(4):363-72. doi: 10.1094/MPMI-19-0363.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验