Berliner L J, Meinholtz D C, Hirai Y, Musci G, Thompson M P
Department of Chemistry, Ohio State University, Columbus 43210.
J Dairy Sci. 1991 Aug;74(8):2394-402. doi: 10.3168/jds.S0022-0302(91)78413-0.
The strong calcium-binding site of alpha-lactalbumin comprises the carboxylate side chains of aspartic acid 82, 87, and 88 and the carbonyl oxygens of residues 79 and 84. A single methionine residue was selectively modified by controlled CNBr cleavage to yield homoserine at position 90. The CNBr-cleaved alpha-lactalbumin lost the ability to bind calcium strongly as monitored by intrinsic fluorescence, electrophoretic mobility, atomic absorption, and x-ray fluorescence. Remarkably, the modified protein was still competent in lactose biosynthesis, although activity was reduced to 1/40th that of the native form of the protein. Although the strong calcium-binding site was destroyed as a result of the cleavage of the calcium-binding loop, a secondary calcium site was retained that directly affects a rate enhancement of lactose biosynthesis when saturated, resulting in approximately a two- to threefold increase in rate at 1 mM CaCl2 with an activation equilibrium constant of 350 +/- 40 microM.