Suppr超能文献

微小RNA-1负向调节肥大相关钙调蛋白和Mef2a基因的表达。

MicroRNA-1 negatively regulates expression of the hypertrophy-associated calmodulin and Mef2a genes.

作者信息

Ikeda Sadakatsu, He Aibin, Kong Sek Won, Lu Jun, Bejar Rafael, Bodyak Natalya, Lee Kyu-Ho, Ma Qing, Kang Peter M, Golub Todd R, Pu William T

机构信息

Department of Cardiology, Children's Hospital Boston, Department of Genetics, Harvard Medical School, Boston, Massachusetts 021151, USA.

出版信息

Mol Cell Biol. 2009 Apr;29(8):2193-204. doi: 10.1128/MCB.01222-08. Epub 2009 Feb 2.

Abstract

Calcium signaling is a central regulator of cardiomyocyte growth and function. Calmodulin is a critical mediator of calcium signals. Because the amount of calmodulin within cardiomyocytes is limiting, the precise control of calmodulin expression is important for the regulation of calcium signaling. In this study, we show for the first time that calmodulin levels are regulated posttranscriptionally in heart failure. The cardiomyocyte-restricted microRNA miR-1 inhibited the translation of calmodulin-encoding mRNAs via highly conserved target sites within their 3' untranslated regions. In keeping with its effect on calmodulin expression, miR-1 downregulated calcium-calmodulin signaling through calcineurin to NFAT. miR-1 also negatively regulated the expression of Mef2a and Gata4, key transcription factors that mediate calcium-dependent changes in gene expression. Consistent with the downregulation of these hypertrophy-associated genes, miR-1 attenuated cardiomyocyte hypertrophy in cultured neonatal rat cardiomyocytes and in the intact adult heart. Our data indicate that miR-1 regulates cardiomyocyte growth responses by negatively regulating the calcium signaling components calmodulin, Mef2a, and Gata4.

摘要

钙信号传导是心肌细胞生长和功能的核心调节因子。钙调蛋白是钙信号的关键介导因子。由于心肌细胞内钙调蛋白的量有限,因此精确控制钙调蛋白的表达对于调节钙信号传导很重要。在本研究中,我们首次表明心力衰竭时钙调蛋白水平在转录后受到调控。心肌细胞特异性微小RNA miR-1通过其3'非翻译区内高度保守的靶位点抑制钙调蛋白编码mRNA的翻译。与其对钙调蛋白表达的影响一致,miR-1通过钙调神经磷酸酶至活化T细胞核因子(NFAT)下调钙-钙调蛋白信号传导。miR-1还负向调节Mef2a和Gata4的表达,这两个关键转录因子介导基因表达中钙依赖性变化。与这些肥大相关基因的下调一致,miR-1减轻了培养的新生大鼠心肌细胞和完整成年心脏中的心肌细胞肥大。我们的数据表明,miR-1通过负向调节钙信号传导成分钙调蛋白、Mef2a和Gata4来调节心肌细胞生长反应。

相似文献

1
MicroRNA-1 negatively regulates expression of the hypertrophy-associated calmodulin and Mef2a genes.
Mol Cell Biol. 2009 Apr;29(8):2193-204. doi: 10.1128/MCB.01222-08. Epub 2009 Feb 2.
2
GATA4 expression is primarily regulated via a miR-26b-dependent post-transcriptional mechanism during cardiac hypertrophy.
Cardiovasc Res. 2012 Mar 15;93(4):645-54. doi: 10.1093/cvr/cvs001. Epub 2012 Jan 4.
3
MicroRNA-26a protects against cardiac hypertrophy via inhibiting GATA4 in rat model and cultured cardiomyocytes.
Mol Med Rep. 2016 Sep;14(3):2860-6. doi: 10.3892/mmr.2016.5574. Epub 2016 Jul 28.
6
Shenfu Injection attenuates rat myocardial hypertrophy by up-regulating miR-19a-3p expression.
Sci Rep. 2018 Mar 16;8(1):4660. doi: 10.1038/s41598-018-23137-4.
7
The H19 long noncoding RNA is a novel negative regulator of cardiomyocyte hypertrophy.
Cardiovasc Res. 2016 Jul 1;111(1):56-65. doi: 10.1093/cvr/cvw078. Epub 2016 Apr 15.
8
Myocyte enhancer factors 2A and 2C induce dilated cardiomyopathy in transgenic mice.
J Biol Chem. 2006 Apr 7;281(14):9152-62. doi: 10.1074/jbc.M510217200. Epub 2006 Feb 9.
10
Differences in MEF2 and NFAT transcriptional pathways according to human heart failure aetiology.
PLoS One. 2012;7(2):e30915. doi: 10.1371/journal.pone.0030915. Epub 2012 Feb 17.

引用本文的文献

1
The lncRNA Jpx participates in testosterone-induced H9c2 cell hypertrophy by targeting the miR-145-5p/Nfatc3 axis.
Front Cell Dev Biol. 2025 Aug 12;13:1620369. doi: 10.3389/fcell.2025.1620369. eCollection 2025.
2
Epigenetic Mechanisms in Heart Diseases.
Rev Cardiovasc Med. 2025 Jul 30;26(7):38696. doi: 10.31083/RCM38696. eCollection 2025 Jul.
4
microRNA-1 regulates metabolic flexibility by programming adult skeletal muscle pyruvate metabolism.
Mol Metab. 2025 Jun 7;98:102182. doi: 10.1016/j.molmet.2025.102182.
6
MicroRNA and Heart Failure: A Novel Promising Diagnostic and Therapeutic Tool.
J Clin Med. 2024 Dec 12;13(24):7560. doi: 10.3390/jcm13247560.
7
Targeting the Epigenetic Marks in Type 2 Diabetes Mellitus: Will Epigenetic Therapy Be a Valuable Adjunct to Pharmacotherapy?
Diabetes Metab Syndr Obes. 2024 Sep 21;17:3557-3576. doi: 10.2147/DMSO.S479077. eCollection 2024.
8
microRNA-1 Regulates Metabolic Flexibility in Skeletal Muscle via Pyruvate Metabolism.
bioRxiv. 2024 Aug 10:2024.08.09.607377. doi: 10.1101/2024.08.09.607377.
9
Roles of non-coding RNA in diabetic cardiomyopathy.
Cardiovasc Diabetol. 2024 Jun 29;23(1):227. doi: 10.1186/s12933-024-02252-9.
10
miR-1 as a Key Epigenetic Regulator in Early Differentiation of Cardiac Sinoatrial Region.
Int J Mol Sci. 2024 Jun 15;25(12):6608. doi: 10.3390/ijms25126608.

本文引用的文献

1
The microRNA miR-1 regulates a MEF-2-dependent retrograde signal at neuromuscular junctions.
Cell. 2008 May 30;133(5):903-15. doi: 10.1016/j.cell.2008.04.035.
2
MicroRNAs flex their muscles.
Trends Genet. 2008 Apr;24(4):159-66. doi: 10.1016/j.tig.2008.01.007. Epub 2008 Mar 5.
3
The microRNA.org resource: targets and expression.
Nucleic Acids Res. 2008 Jan;36(Database issue):D149-53. doi: 10.1093/nar/gkm995. Epub 2007 Dec 23.
4
Altered microRNA expression in human heart disease.
Physiol Genomics. 2007 Nov 14;31(3):367-73. doi: 10.1152/physiolgenomics.00144.2007. Epub 2007 Aug 21.
6
MicroRNAs in the human heart: a clue to fetal gene reprogramming in heart failure.
Circulation. 2007 Jul 17;116(3):258-67. doi: 10.1161/CIRCULATIONAHA.107.687947. Epub 2007 Jul 2.
7
MicroRNAs are aberrantly expressed in hypertrophic heart: do they play a role in cardiac hypertrophy?
Am J Pathol. 2007 Jun;170(6):1831-40. doi: 10.2353/ajpath.2007.061170.
8
MicroRNA-133 controls cardiac hypertrophy.
Nat Med. 2007 May;13(5):613-8. doi: 10.1038/nm1582. Epub 2007 Apr 29.
10
Dysregulation of cardiogenesis, cardiac conduction, and cell cycle in mice lacking miRNA-1-2.
Cell. 2007 Apr 20;129(2):303-17. doi: 10.1016/j.cell.2007.03.030. Epub 2007 Mar 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验