文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

心脏病中的表观遗传机制

Epigenetic Mechanisms in Heart Diseases.

作者信息

Yildiz Mustafa

机构信息

Medical Faculty, Department of Biophysics, Trakya University, 22030 Edirne, Türkiye.

出版信息

Rev Cardiovasc Med. 2025 Jul 30;26(7):38696. doi: 10.31083/RCM38696. eCollection 2025 Jul.


DOI:10.31083/RCM38696
PMID:40776938
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC12326461/
Abstract

Heart diseases (HDs) continue to be among the major diseases that adversely affect human health worldwide, with complex interactions between genetic, environmental, and biochemical factors contributing to their progression. These include coronary heart disease, hypertension, heart failure, vascular calcification, etc. Cardiovascular diseases have been extensively studied in the Framingham Heart Study since 1948, spanning three generations over the past 70 years, and are highly correlated with various factors, including biochemical, environmental, behavioral, and genetic factors. In recent years, epigenetic mechanisms have emerged as crucial regulators of cardiovascular pathology, influencing gene expression without altering the underlying DNA sequence. Moreover, early detection and diagnosis of heart diseases are crucial for improving treatment and prognosis. Recent studies on heart disease have found that the expression of potential candidate genes related to the disease is associated with epigenetic mechanisms. Indeed, abnormal methylation states have been detected in candidate genes that can serve as biomarkers to assess the progression of heart disease. Recent advances in next-generation sequencing techniques have contributed significantly to our understanding of heart diseases, including the role of DNA methylation, adenosine triphosphate (ATP)-dependent chromatin conformation and remodeling, post-translational modifications of histones and non-coding RNAs. Lastly, this review examines the latest discoveries in the epigenetic regulation of heart diseases, highlighting the roles of DNA methyltransferases (DNMTs), histone deacetylases (HDACs), sirtuins (SIRTs), and ten-eleven translocation proteins (TETs). Additionally, this review highlights preclinical therapeutic strategies targeting epigenetic modifiers, offering new avenues for precision medicine in cardiology. Understanding these epigenetic pathways is crucial for developing novel biomarkers and epigenetic-based therapies that aim to reverse maladaptive cardiac remodeling and enhance clinical outcomes.

摘要

心脏病仍然是全球范围内对人类健康产生不利影响的主要疾病之一,遗传、环境和生化因素之间复杂的相互作用促使其病情发展。这些疾病包括冠心病、高血压、心力衰竭、血管钙化等。自1948年以来,心血管疾病在弗雷明汉心脏研究中得到了广泛研究,在过去70年中涵盖了三代人,并且与各种因素高度相关,包括生化、环境、行为和遗传因素。近年来,表观遗传机制已成为心血管病理学的关键调节因子,在不改变基础DNA序列的情况下影响基因表达。此外,心脏病的早期检测和诊断对于改善治疗和预后至关重要。最近关于心脏病的研究发现,与该疾病相关的潜在候选基因的表达与表观遗传机制有关。事实上,在可作为评估心脏病进展生物标志物的候选基因中已检测到异常甲基化状态。下一代测序技术的最新进展极大地促进了我们对心脏病的理解,包括DNA甲基化、三磷酸腺苷(ATP)依赖性染色质构象和重塑、组蛋白的翻译后修饰以及非编码RNA的作用。最后,本综述探讨了心脏病表观遗传调控的最新发现,强调了DNA甲基转移酶(DNMTs)、组蛋白脱乙酰酶(HDACs)、沉默调节蛋白(SIRTs)和10-11易位蛋白(TETs)的作用。此外,本综述强调了针对表观遗传修饰剂的临床前治疗策略,为心脏病精准医学提供了新途径。了解这些表观遗传途径对于开发旨在逆转适应性不良心脏重塑并改善临床结果的新型生物标志物和基于表观遗传的疗法至关重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a77d/12326461/53b0835aad09/2153-8174-26-7-38696-g7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a77d/12326461/77b20f3afd30/2153-8174-26-7-38696-g1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a77d/12326461/de1fdc85a6e5/2153-8174-26-7-38696-g2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a77d/12326461/99f5ecec0d84/2153-8174-26-7-38696-g3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a77d/12326461/d45e76b3b7a2/2153-8174-26-7-38696-g4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a77d/12326461/8557a833f2df/2153-8174-26-7-38696-g5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a77d/12326461/873422423d7f/2153-8174-26-7-38696-g6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a77d/12326461/53b0835aad09/2153-8174-26-7-38696-g7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a77d/12326461/77b20f3afd30/2153-8174-26-7-38696-g1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a77d/12326461/de1fdc85a6e5/2153-8174-26-7-38696-g2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a77d/12326461/99f5ecec0d84/2153-8174-26-7-38696-g3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a77d/12326461/d45e76b3b7a2/2153-8174-26-7-38696-g4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a77d/12326461/8557a833f2df/2153-8174-26-7-38696-g5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a77d/12326461/873422423d7f/2153-8174-26-7-38696-g6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/a77d/12326461/53b0835aad09/2153-8174-26-7-38696-g7.jpg

相似文献

[1]
Epigenetic Mechanisms in Heart Diseases.

Rev Cardiovasc Med. 2025-7-30

[2]
The Black Book of Psychotropic Dosing and Monitoring.

Psychopharmacol Bull. 2024-7-8

[3]
[Epigenetics' implication in autism spectrum disorders: A review].

Encephale. 2017-8

[4]
Epigenetic alterations in prostate cancer: the role of chromatin remodeling.

Epigenomics. 2025-7-22

[5]
Stage-specific DNA methylation dynamics in mammalian heart development.

Epigenomics. 2025-4

[6]
Can a Liquid Biopsy Detect Circulating Tumor DNA With Low-passage Whole-genome Sequencing in Patients With a Sarcoma? A Pilot Evaluation.

Clin Orthop Relat Res. 2025-1-1

[7]
Epi-nutrients for cancer prevention: Molecular mechanisms and emerging insights.

Cell Biol Toxicol. 2025-7-15

[8]
Caenorhabditis Elegans as a Model for Environmental Epigenetics.

Curr Environ Health Rep. 2025-1-20

[9]
Exploring Epigenetic Complexity in Regulation of Hematopoietic Stem Cells Niche: A Mechanistic Journey from Normal to Malignant Hematopoiesis.

Adv Exp Med Biol. 2025

[10]
Short-Term Memory Impairment

2025-1

本文引用的文献

[1]
The role of miR-155 in cardiovascular diseases: Potential diagnostic and therapeutic targets.

Int J Cardiol Cardiovasc Risk Prev. 2024-12-6

[2]
High-resolution DNA methylation changes reveal biomarkers of heart failure with preserved ejection fraction versus reduced ejection fraction.

Basic Res Cardiol. 2025-4

[3]
The Potential Contribution of MyomiRs miR-133a-3p, -133b, and -206 Dysregulation in Cardiovascular Disease Risk.

Int J Mol Sci. 2024-11-27

[4]
The N6-methyladenosine demethylase ALKBH5 is a novel epigenetic regulator of aortic valve calcification.

Cardiovasc Res. 2025-4-15

[5]
Elevated microRNA-187 causes cardiac endothelial dysplasia to promote congenital heart disease through inhibition of NIPBL.

J Clin Invest. 2024-11-25

[6]
Downregulation of miR-214 promotes dilated Cardiomyopathy Progression through PDE5A-Mediated cGMP regulation.

Sci Rep. 2024-11-14

[7]
Epigenetic regulation of diverse regulated cell death modalities in cardiovascular disease: Insights into necroptosis, pyroptosis, ferroptosis, and cuproptosis.

Redox Biol. 2024-10

[8]
Liver microRNA transcriptome reveals miR-182 as link between type 2 diabetes and fatty liver disease in obesity.

Elife. 2024-7-22

[9]
Endothelial-to-Mesenchymal Transition in Cardiovascular Pathophysiology.

Int J Mol Sci. 2024-6-4

[10]
Histone methyltransferase MLL4 protects against pressure overload-induced heart failure via a THBS4-mediated protection in ER stress.

Pharmacol Res. 2024-7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索