Brower-Toland Brent, Riddle Nicole C, Jiang Hongmei, Huisinga Kathryn L, Elgin Sarah C R
Department of Biology, Washington University, St. Louis, MO 63130, USA.
Genetics. 2009 Apr;181(4):1303-19. doi: 10.1534/genetics.108.100271. Epub 2009 Feb 2.
Methylation of histone H3 lysine 9 (H3K9) is a key feature of silent chromatin and plays an important role in stabilizing the interaction of heterochromatin protein 1 (HP1) with chromatin. Genomes of metazoans such as the fruit fly Drosophila melanogaster generally encode three types of H3K9-specific SET domain methyltransferases that contribute to chromatin homeostasis during the life cycle of the organism. SU(VAR)3-9, dG9a, and dSETDB1 all function in the generation of wild-type H3K9 methylation levels in the Drosophila genome. Two of these enzymes, dSETDB1 and SU(VAR)3-9, govern heterochromatin formation in distinct but overlapping patterns across the genome. H3K9 methylation in the small, heterochromatic fourth chromosome of D. melanogaster is governed mainly by dSETDB1, whereas dSETDB1 and SU(VAR)3-9 function in concert to methylate H3K9 in the pericentric heterochromatin of all chromosomes, with dG9a having little impact in these domains, as shown by monitoring position effect variegation. To understand how these distinct heterochromatin compartments may be differentiated, we examined the developmental timing of dSETDB1 function using a knockdown strategy. dSETDB1 acts to maintain heterochromatin during metamorphosis, at a later stage in development than the reported action of SU(VAR)3-9. Surprisingly, depletion of both of these enzymes has less deleterious effect than depletion of one. These results imply that dSETDB1 acts as a heterochromatin maintenance factor that may be required for the persistence of earlier developmental events normally governed by SU(VAR)3-9. In addition, the genetic interactions between dSETDB1 and Su(var)3-9 mutations emphasize the importance of maintaining the activities of these histone methyltransferases in balance for normal genome function.
组蛋白H3赖氨酸9(H3K9)的甲基化是沉默染色质的一个关键特征,在稳定异染色质蛋白1(HP1)与染色质的相互作用中发挥重要作用。后生动物(如有果蝇)的基因组通常编码三种类型的H3K9特异性SET结构域甲基转移酶,它们在生物体的生命周期中对染色质稳态起作用。SU(VAR)3 - 9、dG9a和dSETDB1都在果蝇基因组中野生型H3K9甲基化水平的产生中发挥作用。其中两种酶,dSETDB1和SU(VAR)3 - 9,以不同但重叠的模式在全基因组中调控异染色质形成。果蝇小的异染色质第四条染色体上的H3K9甲基化主要由dSETDB1调控,而dSETDB1和SU(VAR)3 - 9协同作用,使所有染色体的着丝粒周围异染色质中的H3K9甲基化,通过监测位置效应斑驳表明dG9a在这些区域影响很小。为了了解这些不同的异染色质区室是如何区分的,我们使用敲低策略研究了dSETDB1功能的发育时间。dSETDB1在变态期间发挥作用以维持异染色质,发育阶段比报道的SU(VAR)3 - 9的作用阶段更晚。令人惊讶的是,这两种酶的缺失所产生的有害影响比缺失其中一种的影响要小。这些结果表明,dSETDB1作为一种异染色质维持因子,可能是正常由SU(VAR)3 - 9调控的早期发育事件持续所必需的。此外,dSETDB1与Su(var)3 - 9突变之间的遗传相互作用强调了保持这些组蛋白甲基转移酶的活性平衡对于正常基因组功能至关重要。