Tripathi Swarnendu, Portman John J
Department of Physics, Kent State University, Kent, OH 44242, USA.
Proc Natl Acad Sci U S A. 2009 Feb 17;106(7):2104-9. doi: 10.1073/pnas.0806872106. Epub 2009 Feb 3.
We explore how inherent flexibility of a protein molecule influences the mechanism controlling allosteric transitions by using a variational model inspired from work in protein folding. The striking differences in the predicted transition mechanism for the opening of the two domains of calmodulin (CaM) emphasize that inherent flexibility is key to understanding the complex conformational changes that occur in proteins. In particular, the C-terminal domain of CaM (cCaM), which is inherently less flexible than its N-terminal domain (nCaM), reveals "cracking" or local partial unfolding during the open/closed transition. This result is in harmony with the picture that cracking relieves local stresses caused by conformational deformations of a sufficiently rigid protein. We also compare the conformational transition in a recently studied even-odd paired fragment of CaM. Our results rationalize the different relative binding affinities of the EF-hands in the engineered fragment compared with the intact odd-even paired EF-hands (nCaM and cCaM) in terms of changes in flexibility along the transition route. Aside from elucidating general theoretical ideas about the cracking mechanism, these studies also emphasize how the remarkable intrinsic plasticity of CaM underlies conformational dynamics essential for its diverse functions.
我们通过使用一个受蛋白质折叠研究启发的变分模型,探索蛋白质分子的固有柔韧性如何影响控制变构转变的机制。钙调蛋白(CaM)两个结构域打开时预测的转变机制存在显著差异,这强调了固有柔韧性是理解蛋白质中发生的复杂构象变化的关键。特别是,CaM的C端结构域(cCaM),其固有柔韧性低于N端结构域(nCaM),在打开/关闭转变过程中显示出“开裂”或局部部分解折叠。这一结果与这样的图景相符,即开裂缓解了由足够刚性的蛋白质的构象变形引起的局部应力。我们还比较了最近研究的CaM的奇偶配对片段中的构象转变。我们的结果根据沿转变途径的柔韧性变化,解释了工程片段中EF手与完整的奇偶配对EF手(nCaM和cCaM)相比不同的相对结合亲和力。除了阐明关于开裂机制的一般理论观点外,这些研究还强调了CaM显著的内在可塑性如何构成其多种功能所必需的构象动力学的基础。