Suppr超能文献

钙调蛋白-靶标识别中的构象挫折

Conformational frustration in calmodulin-target recognition.

作者信息

Tripathi Swarnendu, Wang Qian, Zhang Pengzhi, Hoffman Laurel, Waxham M Neal, Cheung Margaret S

机构信息

Department of Physics, University of Houston, Houston, TX, 77204, USA; Center for Theoretical Biological Physics, Rice University, Houston, TX, 77005, USA.

出版信息

J Mol Recognit. 2015 Feb;28(2):74-86. doi: 10.1002/jmr.2413. Epub 2015 Jan 20.

Abstract

Calmodulin (CaM) is a primary calcium (Ca(2+) )-signaling protein that specifically recognizes and activates highly diverse target proteins. We explored the molecular basis of target recognition of CaM with peptides representing the CaM-binding domains from two Ca(2+) -CaM-dependent kinases, CaMKI and CaMKII, by employing experimentally constrained molecular simulations. Detailed binding route analysis revealed that the two CaM target peptides, although similar in length and net charge, follow distinct routes that lead to a higher binding frustration in the CaM-CaMKII complex than in the CaM-CaMKI complex. We discovered that the molecular origin of the binding frustration is caused by intermolecular contacts formed with the C-domain of CaM that need to be broken before the formation of intermolecular contacts with the N-domain of CaM. We argue that the binding frustration is important for determining the kinetics of the recognition process of proteins involving large structural fluctuations.

摘要

钙调蛋白(CaM)是一种主要的钙(Ca(2+))信号蛋白,它能特异性识别并激活多种不同的靶蛋白。我们通过实验约束分子模拟,探索了CaM与来自两种Ca(2+)-CaM依赖性激酶CaMKI和CaMKII的CaM结合域的肽段之间靶标识别的分子基础。详细的结合路径分析表明,这两种CaM靶肽虽然长度和净电荷相似,但遵循不同的路径,导致CaM-CaMKII复合物中的结合受挫程度高于CaM-CaMKI复合物。我们发现,结合受挫的分子起源是由与CaM的C结构域形成的分子间接触引起的,在与CaM的N结构域形成分子间接触之前,这些接触需要被打破。我们认为,结合受挫对于确定涉及大结构波动的蛋白质识别过程的动力学很重要。

相似文献

1
Conformational frustration in calmodulin-target recognition.
J Mol Recognit. 2015 Feb;28(2):74-86. doi: 10.1002/jmr.2413. Epub 2015 Jan 20.
2
Opposing Intermolecular Tuning of Ca Affinity for Calmodulin by Neurogranin and CaMKII Peptides.
Biophys J. 2017 Mar 28;112(6):1105-1119. doi: 10.1016/j.bpj.2017.01.020.
5
Computational design of calmodulin mutants with up to 900-fold increase in binding specificity.
J Mol Biol. 2009 Feb 6;385(5):1470-80. doi: 10.1016/j.jmb.2008.09.053. Epub 2008 Sep 27.
7
The Effect of Ca, Lobe-Specificity, and CaMKII on CaM Binding to Na1.1.
Int J Mol Sci. 2018 Aug 23;19(9):2495. doi: 10.3390/ijms19092495.

引用本文的文献

2
Real-time single-molecule imaging of CaMKII-calmodulin interactions.
Biophys J. 2024 Apr 2;123(7):824-838. doi: 10.1016/j.bpj.2024.02.021. Epub 2024 Feb 28.
3
Calmodulin 2 Facilitates Angiogenesis and Metastasis of Gastric Cancer STAT3/HIF-1A/VEGF-A Mediated Macrophage Polarization.
Front Oncol. 2021 Sep 15;11:727306. doi: 10.3389/fonc.2021.727306. eCollection 2021.
4
Coarse-Grained Modeling and Molecular Dynamics Simulations of Ca-Calmodulin.
Front Mol Biosci. 2021 Aug 24;8:661322. doi: 10.3389/fmolb.2021.661322. eCollection 2021.
5
Sequence-structure-function relationships in class I MHC: A local frustration perspective.
PLoS One. 2020 May 18;15(5):e0232849. doi: 10.1371/journal.pone.0232849. eCollection 2020.
6
ProSNEx: a web-based application for exploration and analysis of protein structures using network formalism.
Nucleic Acids Res. 2019 Jul 2;47(W1):W471-W476. doi: 10.1093/nar/gkz390.
7
Calmodulin fishing with a structurally disordered bait triggers CyaA catalysis.
PLoS Biol. 2017 Dec 29;15(12):e2004486. doi: 10.1371/journal.pbio.2004486. eCollection 2017 Dec.
8
Frustration, function and folding.
Curr Opin Struct Biol. 2018 Feb;48:68-73. doi: 10.1016/j.sbi.2017.09.006. Epub 2017 Nov 5.
9
Molecular mechanism of multispecific recognition of Calmodulin through conformational changes.
Proc Natl Acad Sci U S A. 2017 May 16;114(20):E3927-E3934. doi: 10.1073/pnas.1615949114. Epub 2017 May 1.
10
Opposing Intermolecular Tuning of Ca Affinity for Calmodulin by Neurogranin and CaMKII Peptides.
Biophys J. 2017 Mar 28;112(6):1105-1119. doi: 10.1016/j.bpj.2017.01.020.

本文引用的文献

2
Gating and Intermolecular Interactions in Ligand-Protein Association: Coarse-Grained Modeling of HIV-1 Protease.
J Chem Theory Comput. 2011 Oct 11;7(10):3438-46. doi: 10.1021/ct2004885. Epub 2011 Sep 14.
3
Calculating the Bimolecular Rate of Protein-Protein Association with Interacting Crowders.
J Chem Theory Comput. 2013 May 14;9(5):2481-9. doi: 10.1021/ct400048q. Epub 2013 Apr 5.
5
Protein recognition and selection through conformational and mutually induced fit.
Proc Natl Acad Sci U S A. 2013 Dec 17;110(51):20545-50. doi: 10.1073/pnas.1312788110. Epub 2013 Dec 2.
6
Coarse-grained versus atomistic simulations: realistic interaction free energies for real proteins.
Bioinformatics. 2014 Feb 1;30(3):326-34. doi: 10.1093/bioinformatics/btt675. Epub 2013 Nov 22.
7
Multiscaled exploration of coupled folding and binding of an intrinsically disordered molecular recognition element in measles virus nucleoprotein.
Proc Natl Acad Sci U S A. 2013 Oct 1;110(40):E3743-52. doi: 10.1073/pnas.1308381110. Epub 2013 Sep 16.
8
Modeling protein association mechanisms and kinetics.
Curr Opin Struct Biol. 2013 Dec;23(6):887-93. doi: 10.1016/j.sbi.2013.06.014. Epub 2013 Jul 12.
9
Quantifying the topography of the intrinsic energy landscape of flexible biomolecular recognition.
Proc Natl Acad Sci U S A. 2013 Jun 25;110(26):E2342-51. doi: 10.1073/pnas.1220699110. Epub 2013 Jun 10.
10
Structural diversity of calmodulin binding to its target sites.
FEBS J. 2013 Nov;280(21):5551-65. doi: 10.1111/febs.12296. Epub 2013 May 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验