Suppr超能文献

一种基于网络的致病基因预测方法。

A network-based method for predicting disease-causing genes.

作者信息

Karni Shaul, Soreq Hermona, Sharan Roded

机构信息

Blavatnik School of Computer Science, Tel-Aviv University, Tel-Aviv, Israel.

出版信息

J Comput Biol. 2009 Feb;16(2):181-9. doi: 10.1089/cmb.2008.05TT.

Abstract

A fundamental problem in human health is the inference of disease-causing genes, with important applications to diagnosis and treatment. Previous work in this direction relied on knowledge of multiple loci associated with the disease, or causal genes for similar diseases, which limited its applicability. Here we present a new approach to causal gene prediction that is based on integrating protein-protein interaction network data with gene expression data under a condition of interest. The latter are used to derive a set of disease-related genes which is assumed to be in close proximity in the network to the causal genes. Our method applies a set-cover-like heuristic to identify a small set of genes that best "cover" the disease-related genes. We perform comprehensive simulations to validate our method and test its robustness to noise. In addition, we validate our method on real gene expression data and on gene specific knockouts. Finally, we apply it to suggest possible genes that are involved in myasthenia gravis.

摘要

人类健康领域的一个基本问题是致病基因的推断,这在疾病诊断和治疗中具有重要应用。此前在该方向的工作依赖于与疾病相关的多个基因座的知识,或类似疾病的致病基因,这限制了其适用性。在此,我们提出一种新的因果基因预测方法,该方法基于在感兴趣的条件下将蛋白质 - 蛋白质相互作用网络数据与基因表达数据相结合。后者用于推导一组与疾病相关的基因,假定这些基因在网络中与致病基因紧密相邻。我们的方法应用一种类似集合覆盖的启发式算法来识别一小组能最佳“覆盖”与疾病相关基因的基因。我们进行了全面的模拟以验证我们的方法并测试其对噪声的鲁棒性。此外,我们在真实基因表达数据和基因特异性敲除实验上验证了我们的方法。最后,我们将其应用于推测可能参与重症肌无力的基因。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验