Suppr超能文献

通过机器学习揭示全基因组中的阿尔茨海默病基因谱。

Revealing Alzheimer's disease genes spectrum in the whole-genome by machine learning.

作者信息

Huang Xiaoyan, Liu Hankui, Li Xinming, Guan Liping, Li Jiankang, Tellier Laurent Christian Asker M, Yang Huanming, Wang Jian, Zhang Jianguo

机构信息

BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, 518083, China.

BGI-Shenzhen, Shenzhen, 518083, China.

出版信息

BMC Neurol. 2018 Jan 10;18(1):5. doi: 10.1186/s12883-017-1010-3.

Abstract

BACKGROUND

Alzheimer's disease (AD) is an important, progressive neurodegenerative disease, with a complex genetic architecture. A key goal of biomedical research is to seek out disease risk genes, and to elucidate the function of these risk genes in the development of disease. For this purpose, expanding the AD-associated gene set is necessary. In past research, the prediction methods for AD related genes has been limited in their exploration of the target genome regions. We here present a genome-wide method for AD candidate genes predictions.

METHODS

We present a machine learning approach (SVM), based upon integrating gene expression data with human brain-specific gene network data, to discover the full spectrum of AD genes across the whole genome.

RESULTS

We classified AD candidate genes with an accuracy and the area under the receiver operating characteristic (ROC) curve of 84.56% and 94%. Our approach provides a supplement for the spectrum of AD-associated genes extracted from more than 20,000 genes in a genome wide scale.

CONCLUSIONS

In this study, we have elucidated the whole-genome spectrum of AD, using a machine learning approach. Through this method, we expect for the candidate gene catalogue to provide a more comprehensive annotation of AD for researchers.

摘要

背景

阿尔茨海默病(AD)是一种重要的进行性神经退行性疾病,具有复杂的遗传结构。生物医学研究的一个关键目标是寻找疾病风险基因,并阐明这些风险基因在疾病发展中的功能。为此,有必要扩大与AD相关的基因集。在过去的研究中,AD相关基因的预测方法在探索目标基因组区域方面受到限制。我们在此提出一种全基因组范围内预测AD候选基因的方法。

方法

我们提出一种机器学习方法(支持向量机),该方法基于整合基因表达数据和人脑特异性基因网络数据,以发现全基因组范围内AD基因的全貌。

结果

我们对AD候选基因进行分类的准确率和受试者工作特征(ROC)曲线下面积分别为84.56%和94%。我们的方法为从全基因组范围内20000多个基因中提取的AD相关基因谱提供了补充。

结论

在本研究中,我们使用机器学习方法阐明了AD的全基因组谱。通过这种方法,我们期望候选基因目录能为研究人员提供更全面的AD注释。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/06c8/5763548/ceb971bbabd7/12883_2017_1010_Fig1_HTML.jpg

相似文献

1
Revealing Alzheimer's disease genes spectrum in the whole-genome by machine learning.
BMC Neurol. 2018 Jan 10;18(1):5. doi: 10.1186/s12883-017-1010-3.
3
Classifying Alzheimer's disease and normal subjects using machine learning techniques and genetic-environmental features.
J Formos Med Assoc. 2024 Jun;123(6):701-709. doi: 10.1016/j.jfma.2023.10.021. Epub 2023 Dec 2.
7
Novel Cortical Thickness Pattern for Accurate Detection of Alzheimer's Disease.
J Alzheimers Dis. 2015;48(4):995-1008. doi: 10.3233/JAD-150311.
8
Comparative analysis of machine learning algorithms for Alzheimer's disease classification using EEG signals and genetic information.
Comput Biol Med. 2024 Jun;176:108621. doi: 10.1016/j.compbiomed.2024.108621. Epub 2024 May 17.

引用本文的文献

2
Etiology of Late-Onset Alzheimer's Disease, Biomarker Efficacy, and the Role of Machine Learning in Stage Diagnosis.
Diagnostics (Basel). 2024 Nov 23;14(23):2640. doi: 10.3390/diagnostics14232640.
5
The Construction of a Multidomain Risk Model of Alzheimer's Disease and Related Dementias.
J Alzheimers Dis. 2023;96(2):535-550. doi: 10.3233/JAD-221292.
6
8
Improving the Classification of Alzheimer's Disease Using Hybrid Gene Selection Pipeline and Deep Learning.
Front Genet. 2021 Nov 12;12:784814. doi: 10.3389/fgene.2021.784814. eCollection 2021.

本文引用的文献

1
Expression of Alzheimer's disease risk genes in ischemic brain degeneration.
Pharmacol Rep. 2016 Dec;68(6):1345-1349. doi: 10.1016/j.pharep.2016.09.006. Epub 2016 Sep 5.
2
Predicting diabetes mellitus genes via protein-protein interaction and protein subcellular localization information.
BMC Genomics. 2016 Aug 18;17 Suppl 4(Suppl 4):433. doi: 10.1186/s12864-016-2795-y.
3
Genome-wide prediction and functional characterization of the genetic basis of autism spectrum disorder.
Nat Neurosci. 2016 Nov;19(11):1454-1462. doi: 10.1038/nn.4353. Epub 2016 Aug 1.
4
Neuronal subtypes and diversity revealed by single-nucleus RNA sequencing of the human brain.
Science. 2016 Jun 24;352(6293):1586-90. doi: 10.1126/science.aaf1204.
5
The Ensembl gene annotation system.
Database (Oxford). 2016 Jun 23;2016. doi: 10.1093/database/baw093. Print 2016.
7
Establishing the precise evolutionary history of a gene improves prediction of disease-causing missense mutations.
Genet Med. 2016 Oct;18(10):1029-36. doi: 10.1038/gim.2015.208. Epub 2016 Feb 18.
10
Risk prediction for sporadic Alzheimer's disease using genetic risk score in the Han Chinese population.
Oncotarget. 2015 Nov 10;6(35):36955-64. doi: 10.18632/oncotarget.6271.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验