Huang Xiaoyan, Liu Hankui, Li Xinming, Guan Liping, Li Jiankang, Tellier Laurent Christian Asker M, Yang Huanming, Wang Jian, Zhang Jianguo
BGI Education Center, University of Chinese Academy of Sciences, Shenzhen, 518083, China.
BGI-Shenzhen, Shenzhen, 518083, China.
BMC Neurol. 2018 Jan 10;18(1):5. doi: 10.1186/s12883-017-1010-3.
Alzheimer's disease (AD) is an important, progressive neurodegenerative disease, with a complex genetic architecture. A key goal of biomedical research is to seek out disease risk genes, and to elucidate the function of these risk genes in the development of disease. For this purpose, expanding the AD-associated gene set is necessary. In past research, the prediction methods for AD related genes has been limited in their exploration of the target genome regions. We here present a genome-wide method for AD candidate genes predictions.
We present a machine learning approach (SVM), based upon integrating gene expression data with human brain-specific gene network data, to discover the full spectrum of AD genes across the whole genome.
We classified AD candidate genes with an accuracy and the area under the receiver operating characteristic (ROC) curve of 84.56% and 94%. Our approach provides a supplement for the spectrum of AD-associated genes extracted from more than 20,000 genes in a genome wide scale.
In this study, we have elucidated the whole-genome spectrum of AD, using a machine learning approach. Through this method, we expect for the candidate gene catalogue to provide a more comprehensive annotation of AD for researchers.
阿尔茨海默病(AD)是一种重要的进行性神经退行性疾病,具有复杂的遗传结构。生物医学研究的一个关键目标是寻找疾病风险基因,并阐明这些风险基因在疾病发展中的功能。为此,有必要扩大与AD相关的基因集。在过去的研究中,AD相关基因的预测方法在探索目标基因组区域方面受到限制。我们在此提出一种全基因组范围内预测AD候选基因的方法。
我们提出一种机器学习方法(支持向量机),该方法基于整合基因表达数据和人脑特异性基因网络数据,以发现全基因组范围内AD基因的全貌。
我们对AD候选基因进行分类的准确率和受试者工作特征(ROC)曲线下面积分别为84.56%和94%。我们的方法为从全基因组范围内20000多个基因中提取的AD相关基因谱提供了补充。
在本研究中,我们使用机器学习方法阐明了AD的全基因组谱。通过这种方法,我们期望候选基因目录能为研究人员提供更全面的AD注释。