Altarawneh Mohammednoor, Carrizo Daniel, Ziolkowski Artur, Kennedy Eric M, Dlugogorski Bogdan Z, Mackie John C
Process Safety and Environment Protection Research Group, School of Engineering, The University of Newcastle, Callaghan, New South Wales 2308, Australia.
Chemosphere. 2009 Mar;74(11):1435-43. doi: 10.1016/j.chemosphere.2008.12.033. Epub 2009 Feb 3.
This article reports the computational and experimental results of the thermal decomposition of permethrin, a potential source of dibenzo-p-dioxins (PCDD) and polychlorinated dibenzofurans (PCDF). We have performed a quantum chemical analysis by applying density functional theory to obtain the decomposition pathways of permethrin and the formation mechanism of dibenzofuran. We have conducted the pyrolysis experiments in a tubular reactor and identified the pyrolysis products to demonstrate the agreement between the experimental measurements and quantum chemical calculations. The initiation of the decomposition of permethrin involves principally the aromatisation of permethrin into 3-phenoxyphenylacetic acid, 2-methylphenyl ester (J) and concomitant loss of 2HCl. This rearrangement is followed by the rupture of the O-CH2 linkage in J, with a rate constant derived from the quantum chemical results of 1 x 10(15) exp(-68 kcal/mol/RT)s(-1) for temperatures between 700 and 1300 K. This is confirmed by finding that the rate constant for unimolecular rearrangement of permethrin into J is 1.2 x 10(12) exp(-53 kcal/mol/RT)s(-1) over the same range of temperatures and exceeds the direct fission rate constant at all temperatures up to 850+/-120 degrees C as well as by the experimental detection of J prior to the detection of the initial products incorporating diphenyl ether, 1-methyl-3-phenoxybenzene, 3-phenoxybenzaldehyde and 1-chloromethyl-3-phenoxybenzene. As the temperature increases, we observe a rise in secondary products formed directly or indirectly (via phenol/phenoxy) including aromatics (naphthalene), biphenyls (biphenyl, 4-methyl-1,1'-biphenyl) and dibenzofuran (DF). In particular, we discover by means of quantum chemistry a direct route from 2-phenoxyphenoxy to naphthalene. We detect no polychlorinated dibenzo-p-dioxins and dibenzofurans. Unlike the case of oxidative pyrolysis [Tame, N.W., Dlugogorski, B.Z., Kennedy, E.M., 2007b. Formation of dioxins in fires of arsenic-free treated wood: Role of organic preservatives. Environ. Sci. Technol. 41, 6425-6432] where significant yields of both PCDD and PCDF were obtained, under non-oxidative conditions the thermal decomposition of permethrin does not form appreciable amounts of PCDD or PCDF and the presence of oxygen (and/or a sizable radical pool) appears necessary for the formation of dibenzo-p-dioxin itself or PCDD/F from phenol/phenoxy.
本文报道了氯菊酯热分解的计算和实验结果,氯菊酯是二苯并 - 对 - 二恶英(PCDD)和多氯二苯并呋喃(PCDF)的潜在来源。我们应用密度泛函理论进行了量子化学分析,以获得氯菊酯的分解途径和二苯并呋喃的形成机制。我们在管式反应器中进行了热解实验,并鉴定了热解产物,以证明实验测量结果与量子化学计算之间的一致性。氯菊酯分解的起始主要涉及氯菊酯芳构化为3 - 苯氧基苯基乙酸2 - 甲酯(J)并伴随2HCl的损失。这种重排之后是J中O - CH₂键的断裂,根据量子化学结果,在700至1300 K的温度范围内,其速率常数为1×10¹⁵ exp(-68 kcal/mol/RT)s⁻¹。这一点通过以下发现得到证实:在相同温度范围内,氯菊酯单分子重排为J的速率常数为1.2×10¹² exp(-53 kcal/mol/RT)s⁻¹,并且在高达850±120℃的所有温度下,该速率常数均超过直接裂变速率常数,同时在检测到含有二苯醚、1 - 甲基 - 3 - 苯氧基苯、3 - 苯氧基苯甲醛和1 - 氯甲基 - 3 - 苯氧基苯的初始产物之前,实验检测到了J。随着温度升高,我们观察到直接或间接(通过苯酚/苯氧基)形成的次级产物增加,包括芳烃(萘)、联苯(联苯、4 - 甲基 - 1,1'- 联苯)和二苯并呋喃(DF)。特别是,我们通过量子化学发现了一条从2 - 苯氧基苯氧基到萘的直接途径。我们未检测到多氯二苯并 - 对 - 二恶英和二苯并呋喃。与氧化热解的情况不同[Tame, N.W., Dlugogorski, B.Z., Kennedy, E.M., 2007b. Formation of dioxins in fires of arsenic - free treated wood: Role of organic preservatives. Environ. Sci. Technol. 41, 6425 - 6432],在氧化热解中获得了大量的PCDD和PCDF,在非氧化条件下,氯菊酯的热分解不会形成可观量的PCDD或PCDF,并且氧气(和/或大量自由基池)的存在似乎是由苯酚/苯氧基形成二苯并 - 对 - 二恶英本身或PCDD/F所必需的。