Suppr超能文献

相似文献

1
Genome, transcriptome, and secretome analysis of wood decay fungus Postia placenta supports unique mechanisms of lignocellulose conversion.
Proc Natl Acad Sci U S A. 2009 Feb 10;106(6):1954-9. doi: 10.1073/pnas.0809575106. Epub 2009 Feb 4.
2
Transcriptome and Secretome Analyses of the Wood Decay Fungus Wolfiporia cocos Support Alternative Mechanisms of Lignocellulose Conversion.
Appl Environ Microbiol. 2016 Jun 13;82(13):3979-3987. doi: 10.1128/AEM.00639-16. Print 2016 Jul 1.
3
Oxidative Damage Control during Decay of Wood by Brown Rot Fungus Using Oxygen Radicals.
Appl Environ Microbiol. 2018 Oct 30;84(22). doi: 10.1128/AEM.01937-18. Print 2018 Nov 15.
4
Comparative transcriptome and secretome analysis of wood decay fungi Postia placenta and Phanerochaete chrysosporium.
Appl Environ Microbiol. 2010 Jun;76(11):3599-610. doi: 10.1128/AEM.00058-10. Epub 2010 Apr 16.
5
Multi-omic Analyses of Extensively Decayed Pinus contorta Reveal Expression of a Diverse Array of Lignocellulose-Degrading Enzymes.
Appl Environ Microbiol. 2018 Oct 1;84(20). doi: 10.1128/AEM.01133-18. Print 2018 Oct 15.
7
A Fungal Secretome Adapted for Stress Enabled a Radical Wood Decay Mechanism.
mBio. 2021 Aug 31;12(4):e0204021. doi: 10.1128/mBio.02040-21. Epub 2021 Aug 17.
10
Distinct Growth and Secretome Strategies for Two Taxonomically Divergent Brown Rot Fungi.
Appl Environ Microbiol. 2017 Mar 17;83(7). doi: 10.1128/AEM.02987-16. Print 2017 Apr 1.

引用本文的文献

1
Wood decay under anoxia by the brown-rot fungus Fomitopsis pinicola.
Nat Commun. 2025 Aug 9;16(1):7352. doi: 10.1038/s41467-025-62567-3.
2
Aryl-alcohol oxidases: catalysis, diversity, structure-function and emerging biotechnological applications.
Appl Microbiol Biotechnol. 2025 Jun 25;109(1):151. doi: 10.1007/s00253-025-13538-7.
4
Lignin-Degrading Enzymes and the Potential of as a Cell Factory for Lignin Degradation and Valorization.
Microorganisms. 2025 Apr 18;13(4):935. doi: 10.3390/microorganisms13040935.
6
Endolithic Fungal Diversity in Antarctic Oligocene Rock Samples Explored Using DNA Metabarcoding.
Biology (Basel). 2024 Jun 5;13(6):414. doi: 10.3390/biology13060414.
7
Morphological and molecular data reveal sp. nov. and sp. nov. in Polyporales from Asia.
MycoKeys. 2024 Jun 13;106:1-21. doi: 10.3897/mycokeys.106.121840. eCollection 2024.
9
Pure lignin induces overexpression of cytochrome P450 (CYP) encoding genes and brings insights into the lignocellulose depolymerization by .
Heliyon. 2024 Mar 20;10(7):e28449. doi: 10.1016/j.heliyon.2024.e28449. eCollection 2024 Apr 15.
10
Genomic factors shape carbon and nitrogen metabolic niche breadth across Saccharomycotina yeasts.
Science. 2024 Apr 26;384(6694):eadj4503. doi: 10.1126/science.adj4503.

本文引用的文献

1
Three microbial strategies for plant cell wall degradation.
Ann N Y Acad Sci. 2008 Mar;1125:289-97. doi: 10.1196/annals.1419.026.
2
Degradation of cellulose by basidiomycetous fungi.
FEMS Microbiol Rev. 2008 May;32(3):501-21. doi: 10.1111/j.1574-6976.2008.00106.x. Epub 2008 Mar 26.
3
Evidence for cleavage of lignin by a brown rot basidiomycete.
Environ Microbiol. 2008 Jul;10(7):1844-9. doi: 10.1111/j.1462-2920.2008.01605.x. Epub 2008 Mar 23.
4
Molecular evolution and diversity of lignin degrading heme peroxidases in the Agaricomycetes.
J Mol Evol. 2008 Mar;66(3):243-57. doi: 10.1007/s00239-008-9079-3.
5
6
Characteristics of Gloeophyllum trabeum alcohol oxidase, an extracellular source of H2O2 in brown rot decay of wood.
Appl Environ Microbiol. 2007 Oct;73(19):6241-53. doi: 10.1128/AEM.00977-07. Epub 2007 Jul 27.
7
Genome sequence of the cellulolytic gliding bacterium Cytophaga hutchinsonii.
Appl Environ Microbiol. 2007 Jun;73(11):3536-46. doi: 10.1128/AEM.00225-07. Epub 2007 Mar 30.
10
Phylogenetic comparison and classification of laccase and related multicopper oxidase protein sequences.
FEBS J. 2006 May;273(10):2308-26. doi: 10.1111/j.1742-4658.2006.05247.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验