Cinca-Fernando Paula, Vázquez-Rodríguez Aurora, Mangas-Sánchez Juan, Ferreira Patricia
Departamento de Bioquímica y Biología Molecular y Celular, Facultad de Ciencias, Universidad de Zaragoza, Zaragoza, Spain.
Instituto de Biocomputación y Física de Sistemas Complejos, BIFI (GBsC-CSIC Joint Unit), Universidad de Zaragoza, Saragossa, Spain.
Appl Microbiol Biotechnol. 2025 Jun 25;109(1):151. doi: 10.1007/s00253-025-13538-7.
Aryl-alcohol oxidases (AAOs) are flavin-dependent enzymes of the glucose-methanol-choline (GMC) oxidoreductase superfamily that catalyze the oxidation of a broad range of activated primary alcohols into their corresponding aldehydes, generating hydrogen peroxide. While traditionally studied in wood-decaying fungi, AAOs have recently been identified in bacteria and arthropods, revealing unexpected structural and functional diversity. These enzymes display broad substrate promiscuity, with preferences shaped by differences in active-site architecture and physicochemical properties. Structural studies across kingdoms show a conserved GMC fold with specific adaptations in substrate-binding domains. Detailed mechanistic insights-particularly from the AAO from Pleurotus eryngii-suggest a consensus hydride transfer mechanism involving conserved histidine residues, enabling both oxidase and dehydrogenase activity. To explore AAO diversity, BLAST-based mining was performed across fungal, bacterial, and arthropod genomes, leading to the identification and classification of hundreds of putative AAO sequences. These have been further grouped into distinct structural and evolutionary types based on conserved motifs and active-site architecture, revealing convergent strategies and potential functional specialization across kingdoms. Beyond their natural role in biomass degradation, AAOs hold significant biotechnological potential in green chemistry, including the synthesis of valuable aldehydes, bioplastics precursors like 2,5-furandicarboxylic acid, and applications in asymmetric synthesis. Recent advances demonstrate the feasibility of integrating AAOs into industrial biocatalytic processes and artificial cascades. This growing understanding of AAO diversity, structure-function relationships, and biotechnological applications paves the way for the development of novel sustainable biocatalysts in chemical, pharmaceutical, and material industries. KEY POINTS: Aryl-alcohol oxidases (AAOs) occur across fungi, bacteria, and arthropods, with distinct structural and functional features. Sequence similarity searches reveal diverse AAO types with distinct structural and evolutionary traits. AAOs enable green synthesis of high-value-added bio-based chemicals.
芳基醇氧化酶(AAOs)是葡萄糖-甲醇-胆碱(GMC)氧化还原酶超家族中依赖黄素的酶,可催化多种活化的伯醇氧化为相应的醛,并产生过氧化氢。虽然传统上是在木材腐朽真菌中研究AAOs,但最近在细菌和节肢动物中也发现了它们,这揭示了意想不到的结构和功能多样性。这些酶表现出广泛的底物选择性,其偏好受活性位点结构和物理化学性质差异的影响。跨生物界的结构研究表明,GMC折叠结构保守,但在底物结合结构域有特定的适应性变化。详细的机制研究——特别是来自刺芹侧耳的AAO——表明存在一种涉及保守组氨酸残基的普遍氢化物转移机制,使该酶同时具有氧化酶和脱氢酶活性。为了探索AAO的多样性,对真菌、细菌和节肢动物的基因组进行了基于BLAST的挖掘,从而鉴定和分类了数百个假定的AAO序列。根据保守基序和活性位点结构,这些序列进一步被分为不同的结构和进化类型,揭示了跨生物界的趋同策略和潜在的功能特化。除了在生物质降解中的天然作用外,AAOs在绿色化学中具有重要的生物技术潜力,包括合成有价值的醛、生物塑料前体如2,5-呋喃二甲酸,以及在不对称合成中的应用。最近的进展证明了将AAOs整合到工业生物催化过程和人工级联反应中的可行性。对AAO多样性、结构-功能关系和生物技术应用的日益了解,为化学、制药和材料行业开发新型可持续生物催化剂铺平了道路。要点:芳基醇氧化酶(AAOs)存在于真菌、细菌和节肢动物中,具有独特的结构和功能特征。序列相似性搜索揭示了具有不同结构和进化特征的多种AAO类型。AAOs能够绿色合成高附加值的生物基化学品。