Vollaard Niels B J, Constantin-Teodosiu Dimitru, Fredriksson Katarina, Rooyackers Olav, Jansson Eva, Greenhaff Paul L, Timmons James A, Sundberg Carl Johan
The Wenner-Gren Institute, Arrhenius Laboratories, Stockholm Univ., Sweden.
J Appl Physiol (1985). 2009 May;106(5):1479-86. doi: 10.1152/japplphysiol.91453.2008. Epub 2009 Feb 5.
It has not been established which physiological processes contribute to endurance training-related changes (Delta) in aerobic performance. For example, the relationship between intramuscular metabolic responses at the intensity used during training and improved human functional capacity has not been examined in a longitudinal study. In the present study we hypothesized that improvements in aerobic capacity (Vo(2max)) and metabolic control would combine equally to explain enhanced aerobic performance. Twenty-four sedentary males (24 +/- 2 yr; 1.81 +/- 0.08 m; 76.6 +/- 11.3 kg) undertook supervised cycling training (45 min at 70% of pretraining Vo(2max)) 4 times/wk for 6 wk. Performance was determined using a 15-min cycling time trial, and muscle biopsies were taken before and after a 10-min cycle at 70% of pretraining Vo(2max) to quantify substrate metabolism. Substantial interindividual variability in training-induced adaptations was observed for most parameters, yet "low responders" for DeltaVo(2max) were not consistently low responders for other variables. While Vo(2max) and time trial performance were related at baseline (r(2) = 0.80, P < 0.001), the change in Vo(2max) was completely unrelated to the change in aerobic performance. The maximal parameters DeltaVe(max) and DeltaVeq(max) (DeltaVe/Vo(2max)) accounted for 64% of the variance in DeltaVo(2max) (P < 0.001), whereas Deltaperformance was related to changes in the submaximal parameters Veq(submax) (r(2) = 0.33; P < 0.01), muscle Deltalactate (r(2) = 0.32; P < 0.01), and Deltaacetyl-carnitine (r(2) = 0.29; P < 0.05). This study demonstrates that improvements in high-intensity aerobic performance in humans are not related to altered maximal oxygen transport capacity. Altered muscle metabolism may provide the link between training stimulus and improved performance, but metabolic parameters do not change in a manner that relates to aerobic capacity changes.
目前尚未明确哪些生理过程导致了耐力训练相关的有氧能力变化(Delta)。例如,在纵向研究中,尚未考察训练期间所用强度下的肌肉代谢反应与人类功能能力改善之间的关系。在本研究中,我们假设有氧能力(最大摄氧量,Vo₂max)的提高和代谢控制将共同作用,以同等程度解释有氧能力的增强。24名久坐不动的男性(24±2岁;身高1.81±0.08米;体重76.6±11.3千克)进行了有监督的自行车训练(以训练前Vo₂max的70%强度骑行45分钟),每周4次,共6周。使用15分钟的自行车计时赛来测定运动表现,并在以训练前Vo₂max的70%强度骑行10分钟前后采集肌肉活检样本,以量化底物代谢。对于大多数参数,观察到训练引起的适应性存在很大的个体间差异,然而,最大摄氧量变化(DeltaVo₂max)的“低反应者”对于其他变量并不总是低反应者。虽然最大摄氧量和计时赛表现在基线时相关(r² = 0.80,P < 0.001),但最大摄氧量的变化与有氧能力的变化完全无关。最大参数DeltaVe(max)和DeltaVeq(max)(DeltaVe/Vo₂max)占DeltaVo₂max方差的64%(P < 0.001),而运动表现的变化与次最大参数Veq(submax)的变化相关(r² = 0.33;P < 0.01)、肌肉Delta乳酸(r² = 0.32;P < 0.01)以及Delta乙酰肉碱(r² = 0.29;P < 0.05)。本研究表明,人类高强度有氧能力的提高与最大氧运输能力的改变无关。肌肉代谢的改变可能是训练刺激与运动表现改善之间的联系,但代谢参数的变化方式与有氧能力的变化无关。