Suppr超能文献

微通道中理想可极化粒子的电泳运动。

Electrophoretic motion of ideally polarizable particles in a microchannel.

作者信息

Wu Zhemin, Gao Yandong, Li Dongqing

机构信息

Department of Mechanical Engineering, Vanderbilt University, Vanderbilt Place, Nashville, TN, USA.

出版信息

Electrophoresis. 2009 Mar;30(5):773-81. doi: 10.1002/elps.200800381.

Abstract

The induced-charge electrophoretic (ICEP) motion of ideally polarizable particles in a microchannel is numerically studied in this paper. A complete 3-D multi-physics model is set up to simulate the transient ICEP motion of spherical ideally polarizable particles in a microchannel. The study shows that a non-uniform distribution of induced surface charge occurs when an ideally polarizable particle is immersed in an externally applied electric field, resulting in a varying slipping (EOF) velocity along the particle's surface and hence producing micro vortexes in the liquid. The numerical results verify that the steady-state ICEP velocity of an ideally polarizable particle does not differ from the electrophoretic velocity of a non-conducting particle, although the flow field near the particle does. A strong wall-repelling effect of ICEP is found when the polarizable particle is placed close to the channel wall. This is due to the lifting effect generated from the interaction between the induced micro vortexes and the channel wall and depends on the electric field and the particle size. The wall effects on ICEP motion can be used for focusing particles and for separation of particle by density.

摘要

本文对微通道中理想极化颗粒的感应电荷电泳(ICEP)运动进行了数值研究。建立了一个完整的三维多物理场模型,以模拟微通道中球形理想极化颗粒的瞬态ICEP运动。研究表明,当理想极化颗粒浸入外加电场中时,会产生感应表面电荷的非均匀分布,导致沿颗粒表面的滑移(电渗流)速度变化,从而在液体中产生微涡旋。数值结果验证了理想极化颗粒的稳态ICEP速度与非导电颗粒的电泳速度并无差异,尽管颗粒附近的流场有所不同。当可极化颗粒靠近通道壁放置时,发现ICEP具有很强的壁排斥效应。这是由于感应微涡旋与通道壁之间相互作用产生的升力效应,且取决于电场和颗粒大小。ICEP运动的壁效应可用于颗粒聚焦和按密度分离颗粒。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验