Gerlier D, Valentin H
CNRS, Université de Lyon 1, FRE3011, IFR 62 Laennec, 69372 Lyon Cedex 08, France.
Curr Top Microbiol Immunol. 2009;329:163-91. doi: 10.1007/978-3-540-70523-9_8.
Because viruses are obligate parasites, numerous partnerships between measles virus and cellular molecules can be expected. At the entry level, measles virus uses at least two cellular receptors, CD150 and a yet to be identified epithelial receptor to which the virus H protein binds. This dual receptor strategy illuminates the natural infection and inter-human propagation of this lymphotropic virus. The attenuated vaccine strains use CD46 as an additional receptor, which results in a tropism alteration. Surprisingly, the intracellular viral and cellular protein partnership leading to optimal virus life cycle remains mostly a black box, while the interactions between viral proteins that sustain the RNA-dependant RNA polymerase activity (i.e., transcription and replication), the particle assembly and the polarised virus budding are documented. Hsp72 is the only cellular protein that is known to regulate the virus transcription and replication through its interaction with the viral N protein. The viral P protein is phosphorylated by the casein kinase II with undetermined functional consequences. The cellular partnership that controls the intracellular trafficking of viral components, the assembly and/or the budding of measles virus, remains unknown. The virus to cell innate immunity war is better documented. The 5' triphosphate-ended virus leader transcript is recognised by RIG-I, a cellular helicase, and induces the interferon response. Measles virus V protein binds to the MDAS helicase and prevents the MDA5-mediated activation of interferon. By interacting with STAT1 and Jak1, the viral P and V proteins prevent the type I interferon receptor (IFNAR) signalling. The virus N protein interacts with eIF3-p40 to inhibit the translation of cellular mRNA. The H protein binds to TLR2, which then transduces an activation signal and CD150 expression in monocytes. The P protein activates the expression of the ubiquitin modifier A20, thus blocking the TLR4-mediated signalling. Few other partnerships between measles virus components and cellular proteins have been postulated or demonstrated, and they need further investigations to understand their physiopathological outcome.
由于病毒是专性寄生虫,因此可以预期麻疹病毒与细胞分子之间会存在众多伙伴关系。在进入阶段,麻疹病毒至少利用两种细胞受体,即CD150和一种尚未确定的上皮受体(病毒H蛋白与之结合)。这种双重受体策略阐明了这种嗜淋巴细胞病毒的自然感染和人际传播。减毒疫苗株将CD46用作额外受体,这导致了嗜性改变。令人惊讶的是,导致最佳病毒生命周期的细胞内病毒与细胞蛋白伙伴关系大多仍是未知领域,而维持依赖RNA的RNA聚合酶活性(即转录和复制)、病毒粒子组装和极化病毒出芽的病毒蛋白之间的相互作用已有文献记载。热休克蛋白72(Hsp72)是唯一已知通过与病毒N蛋白相互作用来调节病毒转录和复制的细胞蛋白。病毒P蛋白被酪蛋白激酶II磷酸化,其功能后果尚不确定。控制麻疹病毒细胞内成分运输、组装和/或出芽的细胞伙伴关系仍然未知。病毒与细胞先天免疫的对抗有更多文献记载。5'三磷酸末端的病毒前导转录本被细胞解旋酶维甲酸诱导基因I(RIG-I)识别,并诱导干扰素反应。麻疹病毒V蛋白与黑色素瘤分化相关蛋白5(MDAS)解旋酶结合,阻止MDA5介导的干扰素激活。通过与信号转导和转录激活因子1(STAT1)和酪氨酸蛋白激酶1(Jak1)相互作用,病毒P蛋白和V蛋白阻止I型干扰素受体(IFNAR)信号传导。病毒N蛋白与真核翻译起始因子3亚基p40(eIF3-p40)相互作用,抑制细胞mRNA的翻译。H蛋白与Toll样受体2(TLR2)结合,然后转导激活信号并诱导单核细胞中CD150的表达。P蛋白激活泛素修饰因子A20的表达,从而阻断TLR4介导的信号传导。麻疹病毒成分与细胞蛋白之间的其他伙伴关系很少被推测或证实,需要进一步研究以了解其病理生理结果。