Cooper C E, Withers P C, Cruz-Neto A P
Centre of Ecosystem Diversity and Dynamics, Department of Environmental Biology, Curtin University of Technology, P.O. Box U1987, Bentley Delivery Centre, Western Australia 6845, Australia.
Physiol Biochem Zool. 2009 Mar-Apr;82(2):153-62. doi: 10.1086/595967.
We present the first complete study of basic laboratory-measured physiological variables (metabolism, thermoregulation, evaporative water loss, and ventilation) for a South American marsupial, the gracile mouse opossum (Gracilinanus agilis). Body temperature (T(b)) was thermolabile below thermoneutrality (T(b) = 33.5 degrees C), but a substantial gradient between T(b) and ambient temperature (T(a)) was sustained even at T(a) = 12 degrees C (T(b) = 30.6 degrees C). Basal metabolic rate of 1.00 mL O2 g(-1) h(-1) at T(a) = 30 degrees C conformed to the general allometric relationship for marsupials, as did wet thermal conductance (5.7 mL O2 g(-1) h(-1) degrees C(-1)). Respiratory rate, tidal volume, and minute volume at thermoneutrality matched metabolic demand such that O2 extraction was 12.4%, and ventilation increased in proportion to metabolic rate at low T(a). Ventilatory accommodation of increased metabolic rate at low T(a) was by an increase in respiratory rate rather than by tidal volume or O2 extraction. Evaporative water loss at the lower limit of thermoneutrality conformed to that of other marsupials. Relative water economy was negative at thermoneutrality but positive below T(a) = 12 degrees C. Interestingly, the Neotropical gracile mouse opossums have a more positive water economy at low T(a) than an Australian arid-zone marsupial, perhaps reflecting seasonal variation in water availability for the mouse opossum. Torpor occurred at low T(a), with spontaneous arousal when T(b) > 20 degrees C. Torpor resulted in absolute energy and water savings but lower relative water economy. We found no evidence that gracile mouse opossums differ physiologically from other marsupials, despite their Neotropical distribution, sympatry with placental mammals, and long period of separation from Australian marsupials.
我们首次全面研究了一种南美有袋动物——细小鼠负鼠(Gracilinanus agilis)的基本实验室测量生理变量(新陈代谢、体温调节、蒸发失水和通风)。体温(T(b))在热中性温度以下(T(b) = 33.5摄氏度)不稳定,但即使在环境温度(T(a)) = 12摄氏度时(T(b) = 30.6摄氏度),T(b)与环境温度之间仍保持着显著的梯度。在T(a) = 30摄氏度时,基础代谢率为1.00 mL O2 g(-1) h(-1),符合有袋动物的一般异速生长关系,湿热传导率(5.7 mL O2 g(-1) h(-1) 摄氏度(-1))也是如此。热中性温度下的呼吸频率、潮气量和分钟通气量与代谢需求相匹配,使得氧气提取率为12.4%,并且在低T(a)时通风量与代谢率成比例增加。在低T(a)时,代谢率增加时的通气调节是通过呼吸频率的增加而不是潮气量或氧气提取率的增加来实现的。热中性温度下限的蒸发失水量与其他有袋动物一致。相对水分节约率在热中性温度时为负,但在T(a) < 12摄氏度时为正。有趣的是,新热带地区的细小鼠负鼠在低T(a)时的水分节约率比澳大利亚干旱地区的有袋动物更积极,这可能反映了鼠负鼠可获得水分的季节性变化。在低T(a)时会出现蛰伏,当T(b) > 20摄氏度时会自发苏醒。蛰伏导致绝对能量和水分节约,但相对水分节约率较低。我们没有发现证据表明细小鼠负鼠在生理上与其他有袋动物不同,尽管它们分布在新热带地区,与胎盘哺乳动物同域分布,并且与澳大利亚有袋动物长期分离。