Suppr超能文献

使用遗传算法和高通量技术对聚酰亚胺基SEPPI膜进行组成优化。

Compositional optimization of polyimide-based SEPPI membranes using a genetic algorithm and high-throughput techniques.

作者信息

Vandezande Pieter, Gevers Lieven E M, Weyens Nele, Vankelecom Ivo F J

机构信息

Faculty of Bioscience Engineering, Katholieke Universiteit Leuven, Centre for Surface Chemistry and Catalysis, Kasteelpark Arenberg 23, Box 2461, B-3001 Leuven, Belgium.

出版信息

J Comb Chem. 2009 Mar 9;11(2):243-51. doi: 10.1021/cc800135u.

Abstract

Asymmetric, nanosized zeolite-filled solvent resistant nanofiltration (SRNF) membranes, prepared from emulsified polyimide (PI) solutions via the earlier reported solidification of emulsified polymer solutions via phase inversion (SEPPI) method, were optimized for their performance in the separation of rose bengal (RB) from 2-propanol (IPA). All membranes were prepared and tested in a parallellized, miniaturized, and automated manner using laboratory-developed high-throughput experimentation techniques. Nine different synthesis parameters related to the composition of the casting solutions were thus optimized. In a first, "conventional" approach, a preliminary systematic screening was carried out, in which only four constituents were used, that is, Matrimid PI, NMP as solvent, THF as volatile cosolvent, and an NMP-based zeolite precursor sol as emulsifying agent. A combinatorial strategy, based on a genetic algorithm and a self-adaptive evolutionary strategy, was then applied to optimize the SRNF performance of PI-based SEPPI membranes. This directed approach allowed the screening of an extended, 9-dimensional parameter space, comprising two extra solvents, the two corresponding nanosized zeolite suspensions, as well as another cosolvent. Coupling with high-throughput techniques allowed the preparation of three generations of casting solutions, 176 compositions in total, resulting in 125 testable membranes. With IPA permeances up to 3.3 L.m(-2) h(-1) bar(-1) and RB rejections around 98%, the combinatorially optimized membranes scored significantly better with respect to fluxes and selectivities than the best membranes obtained in the systematic screening. The best SEPPI membranes also showed much higher IPA permeances than two commercial SRNF membranes at similar or slightly lower RB rejections.

摘要

通过早期报道的相转化乳化聚合物溶液固化法(SEPPI),由乳化聚酰亚胺(PI)溶液制备了不对称的、纳米尺寸的填充沸石耐溶剂纳滤(SRNF)膜,并对其从2-丙醇(IPA)中分离孟加拉玫瑰红(RB)的性能进行了优化。所有膜均采用实验室开发的高通量实验技术,以平行、小型化和自动化的方式制备和测试。因此,对与铸膜液组成相关的九个不同合成参数进行了优化。在第一种“传统”方法中,进行了初步的系统筛选,其中仅使用了四种成分,即Matrimid PI、作为溶剂的NMP、作为挥发性共溶剂的THF以及作为乳化剂的基于NMP的沸石前驱体溶胶。然后应用基于遗传算法和自适应进化策略的组合策略来优化基于PI的SEPPI膜的SRNF性能。这种定向方法允许筛选一个扩展的九维参数空间,包括另外两种溶剂、两种相应的纳米尺寸沸石悬浮液以及另一种共溶剂。与高通量技术相结合,制备了三代铸膜液,总共176种组合物,得到125种可测试的膜。在IPA通量高达3.3 L·m⁻²·h⁻¹·bar⁻¹且RB截留率约为98%的情况下,组合优化后的膜在通量和选择性方面的得分明显高于系统筛选中获得的最佳膜。在相似或略低的RB截留率下,最佳的SEPPI膜的IPA通量也比两种商业SRNF膜高得多。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验